1000 resultados para South Hadley
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
The author describes her experiences as a librarian and an adjunct professor at the Graduate School of Library and Information Science at Simmons College in South Hadley, Massachusetts. She enjoys teaching students about library science, and loves her job. She says it can be difficult balancing two jobs, but that the reward of helping create new librarians makes it worth it. It also helps her keep her own skills current.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: A topographical map of Hampshire County, Massachusetts, the details from actual surveys under the direction of H.F. Walling, superintendent of the state map. It was published by Sarony & Co. in 1856. Scale [ca. 1:48,500]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Massachusetts State Plane Coordinate System, Mainland Zone (in Feet) (Fipszone 2001). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows features such as roads, railroads, drainage, public buildings, schools, churches, cemeteries, industry locations (e.g. mills, factories, mines, etc.), private buildings with names of property owners, town and county boundaries and more. Relief is shown by hachures. It includes many cadastral insets of individual county towns and villages, and an inset geological map of county. This map represents county boundaries as of 1856, thus portions of the towns of Holyoke (Hampden County), New Salem (Franklin County), and Petersham (Worcester County) are also represented on this map. This layer is part of a selection of digitally scanned and georeferenced historic maps of Massachusetts from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of regions, originators, ground condition dates (1755-1922), scales, and purposes. The digitized selection includes maps of: the state, Massachusetts counties, town surveys, coastal features, real property, parks, cemeteries, railroads, roads, public works projects, etc.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Northampton, Massachusetts quadrangle. The survey date (ground condition) of the original paper map is 1884-1885, the edition date is July, 1895 and this map has a reprint date of April 1909. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Springfield, Massachusetts quadrangle. The survey dates (ground condition) of the original paper map are 1886 and 1887 and the edition date is 1889. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
"Published by vote of the Trustees."
Resumo:
The Tropospheric Biennial Oscillation (TBO), a major interannual variation phenomenon in the Indo-Pacific region, is the result of strong ocean-atmosphere coupling over the Asian-Australian monsoon area. Along with other meteorological and oceanographic parameters, the tropical circulation also exhibits interannual oscillations. Even though the TBO is the result of strong air–sea interaction, the circulation cells during TBO years are, as yet, not well understood. In the present study, an attempt has been made to understand the interannual variability of the mean meridional circulation and local monsoon circulation over south Asia in connection with the TBO. The stream function computed from the zonal mean meridional wind component of NCEP=NCAR reanalysis data for the years 1950–2003 is used to represent the meanmeridional circulation. Mean meridional mass transport in the topics reverses from a weak monsoon to a strong monsoon in the presence of ENSO, but in normal TBO yearsmean transport remains weak across the Northern Hemisphere. The meridional temperature gradient, which drives the mean meridional circulation, also shows no reversal during the normal TBO cycle. The local Hadley circulation over the monsoon area follows the TBO cycle with anomalous ascent (descent) in strong (weak) monsoon years. During normal TBO years, the Equatorial region and Indian monsoon areas exhibit opposite local Hadley circulation anomalies
Resumo:
Understanding the response of the South Asian monsoon (SAM) system to global climate change is an interesting scientific problem that has enormous implications from the societal viewpoint. While the CMIP3 projections of future changes in monsoon precipitation used in the IPCC AR4 show major uncertainties, there is a growing recognition that the rapid increase of moisture in a warming climate can potentially enhance the stability of the large-scale tropical circulations. In this work, the authors have examined the stability of the SAM circulation based on diagnostic analysis of climate datasets over the past half century; and addressed the issue of likely future changes in the SAM in response to global warming using simulations from an ultrahigh resolution (20 km) global climate model. Additional sensitivity experiments using a simplified atmospheric model have been presented to supplement the overall findings. The results here suggest that the intensity of the boreal summer monsoon overturning circulation and the associated southwesterly monsoon flow have significantly weakened during the past 50-years. The weakening trend of the monsoon circulation is further corroborated by a significant decrease in the frequency of moderate-to-heavy monsoon rainfall days and upward vertical velocities particularly over the narrow mountain ranges of the Western Ghats. Based on simulations from the 20-km ultra high-resolution model, it is argued that a stabilization (weakening) of the summer monsoon Hadley-type circulation in response to global warming can potentially lead to a weakened large-scale monsoon flow thereby resulting in weaker vertical velocities and reduced orographic precipitation over the narrow Western Ghat mountains by the end of the twenty-first century. Supplementary experiments using a simplified atmospheric model indicate a high sensitivity of the large-scale monsoon circulation to atmospheric stability in comparison with the effects of condensational heating.
Resumo:
The variations of tropical precipitation are antiphased between the hemispheres on orbital timescales. This antiphasing arises through the alternating strength of incoming solar radiation in the two hemispheres, which affects monsoon intensity and hence the position of the meridional atmospheric circulation of the Hadley cells(1-4). Here we compare an oxygen isotopic record recovered from a speleothem from northeast Brazil for the past 26,000 years with existing reconstructions of precipitation in tropical South America(5-8). During the Holocene, we identify a similar, but zonally oriented, antiphasing of precipitation within the same hemisphere: northeast Brazil experiences humid conditions during low summer insolation and aridity when summer insolation is high, whereas the rest of southern tropical South America shows opposite characteristics. Simulations with a general circulation model that incorporates isotopic variations support this pattern as well as the link to insolation-driven monsoon activity. Our results suggest that convective heating over tropical South America and associated adjustments in large-scale subsidence over northeast Brazil lead to a remote forcing of the South American monsoon, which determines most of the precipitation changes in the region on orbital timescales.
Resumo:
This work investigates the eproducibility of precipitation simulated with an atmospheric general circulation model (AGCM) forced by subtropical South Atlantic sea surface temperature (SST) anomalies. This represents an important test of the model prior to investigating the impact of SSTs on regional climate. A five-member ensemble run was performed using the National Center for Atmospheric Research (NCAR) Community Climate Model, version 3 (CCM3). The CCM3 was forced by observed monthly SST over the South Atlantic from 20 to 60 S. The SST dataset used is from the Hadley Centre covering the period of September 1949-October 2001; this covers more than 50 yr of simulation. A statistical technique is used to determine the reproducibility in the CCM3 runs and to assess potential predictability in precipitation. Empirical orthogonal function analysis is used to reconstruct the ensemble using the most reproducible forced modes in order to separate the atmospheric response to local SST forcing from its internal variability. Results for reproducibility show a seasonal dependence, with higher values during austral autumn and spring. The spatial distribution of reproducibility shows that the tropical atmosphere is dominated by the underlying SSTs while variations in the subtropical-extratropical regions are primarily driven by internal variability. As such, changes in the South Atlantic convergence zone (SACZ) region are mainly dominated by internal atmospheric variability while the ITCZ has greater external dependence, making it more predictable. The reproducibility distribution reveals increased values after the reconstruction of the ensemble.
Inter-Organisational Approaches to Regional Growth Management: A Case Study in South East Queensland