926 resultados para Solar Thermal Collector


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three novel solar thermal collector concepts derived from the Linear Fresnel Reflector (LFR) are developed and evaluated through a multi-criteria decision-making methodology, comprising the following techniques: Quality Function Deployment (QFD), the Analytical Hierarchy Process (AHP) and the Pugh selection matrix. Criteria are specified by technical and customer requirements gathered from Gujarat, India. The concepts are compared to a standard LFR for reference, and as a result, a novel 'Elevation Linear Fresnel Reflector' (ELFR) concept using elevating mirrors is selected. A detailed version of this concept is proposed and compared against two standard LFR configurations, one using constant and the other using variable horizontal mirror spacing. Annual performance is analysed for a typical meteorological year. Financial assessment is made through the construction of a prototype. The novel LFR has an annual optical efficiency of 49% and increases exergy by 13-23%. Operational hours above a target temperature of 300 C are increased by 9-24%. A 17% reduction in land usage is also achievable. However, the ELFR suffers from additional complexity and a 16-28% increase in capital cost. It is concluded that this novel design is particularly promising for industrial applications and locations with restricted land availability or high land costs. The decision analysis methodology adopted is considered to have a wider potential for applications in the fields of renewable energy and sustainable design. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The  aim  of  this  master  thesis  is  an  investigation  of  the  thermal  performance  of  a  thermal compound parabolic concentrating (CPC) collector from Solarus. The collector consists of two troughs with absorbers which are coated with different types of paint with  unknown  properties.  The  lower  and  upper  trough  of  the  collector  have  been  tested individually. In  order  to  accomplish  the  performance  of  the  two  collectors,  a  thorough  literature  study  in  the  fields  of  CPC  technology,  various  test  methods,  test  standards  for  solar thermal  collectors  as  well  as  the  latest  articles  relating  on  the  subject  were  carried  out. In addition, the set‐up of the thermal test rig was part of the thesis as well. The thermal  performance  was  tested  according  to  the  steady  state  test  method  as  described in the European standard 12975‐2. Furthermore, the thermal performance of  a  conventional  flat  plate  collector  was  carried  out  for  verification  of  the  test  method. The  CPC‐Thermal  collector  from  Solarus  was  tested  in  2013  and  the  results  showed  four  times  higher  values  of  the  heat  loss  coefficient  UL (8.4  W/m²K)  than  what  has been reported for a commercial collector from Solarus. This value was assumed to be too large and it was assumed that the large value was a result of the test method used that time. Therefore, another aim was the comparison of the results achieved in this work with the results from the tests performed in 2013. The results of the thermal performance showed that the optical efficiency of the lower trough of the CPC‐T collector is 77±5% and the corresponding heat loss coefficient UL 4.84±0.20  W/m²K.  The  upper  trough  achieved  an  optical  efficiency  of  75±6  %  and  a  heat loss coefficient UL of 6.45±0.27 W/m²K. The results of the heat loss coefficients  are  valid  for  temperature  intervals  between  20°C  and  80°C.  The  different  absorber paintings have a significant impact on the results, the lower trough performs overall better.  The  results  achieved  in  this  thesis  show  lower  heat  loss  coefficients UL and higher optical efficiencies compared to the results from 2013. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Producing cost-competitive small and medium-sized solar cooling systems is currently a significant challenge. Due to system complexity, extensive engineering, design and equipment costs; the installation costs of solar thermal cooling systems are prohibitively high. In efforts to overcome these limitations, a novel sorption heat pump module has been developed and directly integrated into a solar thermal collector. The module comprises a fully encapsulated sorption tube containing hygroscopic salt sorbent and water as a refrigerant, sealed under vacuum with no moving parts. A 5.6m2 aperture area outdoor laboratory-scale system of sorption module integrated solar collectors was installed in Stockholm, Sweden and evaluated under constant re-cooling and chilled fluid return temperatures in order to assess collector performance. Measured average solar cooling COP was 0.19 with average cooling powers between 120 and 200 Wm-2 collector aperture area. It was observed that average collector cooling power is constant at daily insolation levels above 3.6 kWhm-2 with the cooling energy produced being proportional to solar insolation. For full evaluation of an integrated sorption collector solar heating and cooling system, under the umbrella of a European Union project for technological innovation, a 180 m2 large-scale demonstration system has been installed in Karlstad, Sweden. Results from the installation commissioned in summer 2014 with non-optimised control strategies showed average electrical COP of 10.6 and average cooling powers between 140 and 250 Wm-2 collector aperture area. Optimisation of control strategies, heat transfer fluid flows through the collectors and electrical COP will be carried out in autumn 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many efforts have been made in order to adequate the production of a solar thermal collector field to the consumption of domestic hot water of the inhabitants of a building. In that sense, much has been achieved in different domains: research agencies, government policies and manufacturers. However, most of the design rules of the solar plants are based on steady state models, whereas solar irradiance, consumption and thermal accumulation are inherently transient processes. As a result of this lack of physical accuracy, thermal storage tanks are sometimes left to be as large as the designer decides without any aforementioned precise recommendation. This can be a problem if solar thermal systems are meant to be implemented in nowadays buildings, where there is a shortage of space. In addition to that, an excessive storage volume could not result more efficient in many residential applications, but costly, extreme in space consumption and in some cases too heavy. A proprietary transient simulation program has been developed and validated with a detailed measurement campaign in an experimental facility. In situ environmental data have been obtained through a whole year of operation. They have been gathered at intervals of 10 min for a solar plant of 50 m2 with a storage tank of 3 m3, including the equipment for domestic hot water production of a typical apartment building. This program has been used to obtain the design and dimensioning criteria of DHW solar plants under daily transient conditions throughout a year and more specifically the size of the storage tank for a multi storey apartment building. Comparison of the simulation results with the current Spanish regulation applicable, “Código Técnico de la Edificación” (CTE 2006), offers fruitful details and establishes solar facilities dimensioning criteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three dimensional conjugate heat transfer simulation of a standard parabolic trough thermal collector receiver is performed numerically in order to visualize and analyze the surface thermal characteristics. The computational model is developed in Ansys Fluent environment based on some simplified assumptions. Three test conditions are selected from the existing literature to verify the numerical model directly, and reasonably good agreement between the model and the test results confirms the reliability of the simulation. Solar radiation flux profile around the tube is also approximated from the literature. An in house macro is written to read the input solar flux as a heat flux wall boundary condition for the tube wall. The numerical results show that there is an abrupt variation in the resultant heat flux along the circumference of the receiver. Consequently, the temperature varies throughout the tube surface. The lower half of the horizontal receiver enjoys the maximum solar flux, and therefore, experiences the maximum temperature rise compared to the upper part with almost leveled temperature. Reasonable attributions and suggestions are made on this particular type of conjugate thermal system. The knowledge that gained so far from this study will be used to further the analysis and to design an efficient concentrator photovoltaic collector in near future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parabolic Trough Concentrators (PTC) are the most proven solar collectors for solar thermal power plants, and are suitable for concentrating photovoltaic (CPV) applications. PV cells are sensitive to spatial uniformity of incident light and the cell operating temperature. This requires the design of CPV-PTCs to be optimised both optically and thermally. Optical modelling can be performed using Monte Carlo Ray Tracing (MCRT), with conjugate heat transfer (CHT) modelling using the computational fluid dynamics (CFD) to analyse the overall designs. This paper develops and evaluates a CHT simulation for a concentrating solar thermal PTC collector. It uses the ray tracing work by Cheng et al. (2010) and thermal performance data for LS-2 parabolic trough used in the SEGS III-VII plants from Dudley et al. (1994). This is a preliminary step to developing models to compare heat transfer performances of faceted absorbers for concentrating photovoltaic (CPV) applications. Reasonable agreement between the simulation results and the experimental data confirms the reliability of the numerical model. The model explores different physical issues as well as computational issues for this particular kind of system modeling. The physical issues include the resultant non-uniformity of the boundary heat flux profile and the temperature profile around the tube, and uneven heating of the HTF. The numerical issues include, most importantly, the design of the computational domain/s, and the solution techniques of the turbulence quantities and the near-wall physics. This simulation confirmed that optical simulation and the computational CHT simulation of the collector can be accomplished independently.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modifications made in a solar air collector inlet duct to achieve uniform velocity of air in the absorber duct are described. Measurements of temperature and pressure at various points in the duct gave information on the distribution of air in the absorber duct. A thermal performance test conducted on the collector with a vaned diffuser showed some significant improvement compared with a diffuser without vanes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a hybrid solar cooking system where the solar energy is brought to the kitchen. The energy source is a combination of the solar thermal energy and the Liquefied Petroleum Gas (LPG) that is in common use in kitchens. The solar thermal energy is transferred to the kitchen by means of a circulating fluid. The transfer of solar heat is a twofold process wherein the energy from the collector is transferred first to an intermediate energy storage buffer and the energy is subsequently transferred from the buffer to the cooking load. There are three parameters that are controlled in order to maximize the energy transfer from the collector to the load viz, the fluid flow rate from collector to buffer, fluid flow rate from buffer to load and the diameter of the pipes. This is a complex multi energy domain system comprising energy flow across several domains such as thermal, electrical and hydraulic. The entire system is modeled using the bond graph approach with seamless integration of the power flow in these domains. A method to estimate different parameters of the practical cooking system is also explained. Design and life cycle costing of the system is also discussed. The modeled system is simulated and the results are validated experimentally. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes large scale tests conducted on a novel unglazed solar air collector system. The proposed system, referred to as a back-pass solar collector (BPSC), has on-site installation and aesthetic advantages over conventional unglazed transpired solar collectors (UTSC) as it is fully integrated within a standard insulated wall panel. This paper presents the results obtained from monitoring a BPSC wall panel over one year. Measurements of temperature, wind velocity and solar irradiance were taken at multiple air mass flow rates. It is shown that the length of the collector cavities has a direct impact on the efficiency of the system. It is also shown that beyond a height-to-flow ratio of 0.023m/m<sup>3</sup>/hr/m<sup>2</sup>, no additional heat output is obtained by increasing the collector height for the experimental setup in this study, but these numbers would obviously be different if the experimental setup or test environment (e.g. location and climate) change. An equation for predicting the temperature rise of the BPSC is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores the potential for façade located solar thermal collectors. Building typologies with limited roof space area are highlighted. A relationship exists between hot water consumption and the solar collector area; hence, a literature review of the hot water consumption of different building typologies is conducted. The review showed that there is a paucity of information on the hot water consumption of buildings, primarily attributed to the difficulty in quantifying it. The hot water consumption is typically describedusing liters per capita per day (Lcd) units, with a broad range of values existing, dependent, primarily on the building's function and location. Asimulation-based study is conducted to size solar thermal systems for different buildings and their associated hot water loads. High solar fractions,for buildings with high levels of hot water consumption, could only be achievedby using significantly largercollector surface areas. As a result, façade located solar thermal collectors are required for certain high-rise buildings that aim to provide for their hot water needs using a considerable portion of solar energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solar heating systems have the potential to be an efficient renewable energy technology, provided they are sized correctly. Sizing a solar thermal system for domestic applications does not warrant the cost of a simulation. As a result simplified sizing procedures are required. The size of a system depends on a number of variables including the efficiency of the collector itself, the hot water demand and the solar radiation at a given location. Domestic Hot Water (DHW) demand varies with time and is assessed using a multi-parameter detailed model. Secondly, the national energy evaluation methodologies are evaluated from the perspective of solar thermal system sizing. Based on the assessment of the standards, limitations in the evaluation method for solar thermal systems are outlined and an adapted method, specific to the sizing of solar thermal systems, is proposed. The methodology is presented for two common dwelling scenarios. Results from this showed that it is difficult to achieve a high solar fraction given practical sizes of system infrastructure (storage tanks) for standard domestic properties. However, solar thermal systems can significantly offset energy loads due associated DHW consumption, particularly when sized appropriately. The presented methodology is valuable for simple solar system design and also for the quick comparison of salient criteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a northern European climate a typical solar combisystem for a single family house normally saves between 10 and 30 % of the auxiliary energy needed for space heating and domestic water heating. It is considered uneconomical to dimension systems for higher energy savings. Overheating problems may also occur. One way of avoiding these problems is to use a collector that is designed so that it has a low optical efficiency in summer, when the solar elevation is high and the load is small, and a high optical efficiency in early spring and late fall when the solar elevation is low and the load is large.The study investigates the possibilities to design the system and, in particular, the collector optics, in order to match the system performance with the yearly variations of the heating load and the solar irradiation. It seems possible to design practically viable load adapted collectors, and to use them for whole roofs ( 40 m2) without causing more overheating stress on the system than with a standard 10 m2 system. The load adapted collectors collect roughly as much energy per unit area as flat plate collectors, but they may be produced at a lower cost due to lower material costs. There is an additional potential for a cost reduction since it is possible to design the load adapted collector for low stagnation temperatures making it possible to use less expensive materials. One and the same collector design is suitable for a wide range of system sizes and roof inclinations. The report contains descriptions of optimized collector designs, properties of realistic collectors, and results of calculations of system output, stagnation performance and cost performance. Appropriate computer tools for optical analysis, optimization of collectors in systems and a very fast simulation model have been developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pilot versions of a solar heating/natural gas burner system, of a solar heating/pellet burner system and of a façade/roof integrated polymeric collector have been installed in the summer of 2006 in a number of demonstration houses in Denmark, Sweden and Norway.These three new products have been evaluated by means of measurements of the thermal performance and energy savings of the pilot systems in practice and by means of a commercial evaluation.The conclusion of the evaluations is that the products are attractive for the industry partners METRO THERM A/S, Solentek and SOLARNOR. It is expected that the companies will bring the products into the market in 2007.Further, the results of the project have been presented atinternational and national congresses and seminars for the solar heating branch. The congresses and seminars attracted a lot of interested participants.Furthermore, the project results have been published in international congress papers as well as in national journals in the energy field.Consequently, the Nordic solar heating industry will benefit from the project.