897 resultados para Sodium Glutamate


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In rats, neonatal treatment with monosodium L-glutamate (MSG) induces several metabolic and neuroendocrine abnormalities, which result in hyperadiposity. No data exist, however, regarding neuroendocrine, immune and metabolic responses to acute endotoxemia in the MSG-damaged rat. We studied the consequences of MSG treatment during the acute phase response of inflammatory stress. Neonatal male rats were treated with MSG or vehicle (controls, CTR) and studied at age 90 days. Pituitary, adrenal, adipo-insular axis, immune, metabolic and gonadal functions were explored before and up to 5 h after single sub-lethal i.p. injection of bacterial lipopolysaccharide (LPS; 150 microg/kg). Our results showed that, during the acute phase response of inflammatory stress in MSG rats: (1) the corticotrope-adrenal, leptin, insulin and triglyceride responses were higher than in CTR rats, (2) pro-inflammatory (TNFalpha) cytokine response was impaired and anti-inflammatory (IL-10) cytokine response was normal, and (3) changes in peripheral estradiol and testosterone levels after LPS varied as in CTR rats. These data indicate that metabolic and neroendocrine-immune functions are altered in MSG-damaged rats. Our study also suggests that the enhanced corticotrope-corticoadrenal activity in MSG animals could be responsible, at least in part, for the immune and metabolic derangements characterizing hypothalamic obesity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present study was designed to evaluate the effects of chronic aerobic exercise (swimming, 1h/day, 5 days/week, with an overload of 5% body weight) on glucose metabolism in obese male Wistar rats. Hypothalamic obesity was induced through administration of monosodium glutamate (MSG) at 4 mg/g of body weight every other day from birth to 14 days old. Fourteen weeks after drug administration, the rats were separated into two groups: MSG-S (sedentary) and MSG-T (swimming for 10 weeks). Rats of the same age and strain, receiving saline in place of MSG, were used as control (C), and subdivided into two groups: C-S and C-T. At the end of the experimental period, an oral glucose tolerance test was performed and serum glucose (AG) and insulin (AI) were evaluated. A constant for serum glucose decrease (Kitt) in response to exogenous insulin was calculated. Soleus muscle strips and adipose tissue samples were incubated and insulin stimulated glucose uptake determined. No differences were observed in AG among the 4 groups. MSG-S rats showed higher AI (418%) and lower Kitt (92.3%) than C-S rats. T-rats showed higher glucose uptake by muscle (224.0%) and adipose tissues (94.1%) than S-rats. Among trained rats, glucose uptake by muscle was higher in MSG-T (5.4%) than in C-T. while the opposite was observed in adipose tissue (39% higher in C-T). Chronic aerobic exercise was able to improve glucose tolerance and reduce insulin resistance in MSG-obese rats. These effects were associated to an increase in glucose uptake by muscle and adipose tissue in response to insulin.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Obesity is an increasing problem in several countries, leading to health problems. Physical exercise, in turn, can be used effectively by itself or in combination with dietary restriction to trigger weight loss. The present study was designed to evaluate the effects of aerobic exercise training on lipid profile of obese male Wistar rats in order to verify if this model may be of value for the study of exercise in obesity. Obesity was induced by MSG administration (4mg/g, each other day, from birth to 14 days old) After 14 from drug administration, the rats were separated into two groups: MSG-S (sedentary) and MSG-T (exercise trained). Exercise training consisted in 1h/day, 5 days/week, with an overload of 5% bw, for 10 weeks. Rats of the same age and strain, receiving saline at birth, were used as control (C), and subdivided into two groups: C-S and C-T. At the end of the experimental period, MSG-T and C-T rats showed similar blood lactate and muscle glycogen responses to exercise training and acute exercise. MSG-S rats showed significantly higher carcass fat, serum triacylglycerol, serum insulin and liver total fat than C-S rats. On the other hand, MSG-T rats had lower carcass fat, serum triacylglycerol and liver total fat than MSG-S rats. There were no statistical differences in food intake and serum free fatty acids among the groups studied. These data indicate that this model may be of value for the study of exercise effects on tissue and circulating lipid profile in obesity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present study was designed to evaluate the effects of aerobic exercise training on glucose tolerance and insulin secretion of obese male Wistar rats (monosodium glutamate [MSG] administration, 4mg/g-body weight, each other day, from birth to the 14th day). Fourteen weeks after the drug administration, the rats were separated into two groups: MSG-S (sedentary) and MSG-T (T = swimming, 1 h/day, 5 days/week, with an overload of 5% body weight for 10 weeks). Rats of the same age and strain injected with saline were used as control (C) and subdivided into two groups: C-S and C-T. Insulin and glucose responses during an oral glucose tolerance test (GTT) were evaluated by the estimation of the total areas under serum insulin (AI) and glucose (AG) curves. Glucose-induced insulin secretion by isolated pancreatic islets was also evaluated. MSG-S rats showed higher AI than C-rats while MSG-T rats presented lower AI than MSG-S rats. No differences in AG were observed among the 4 groups. Pancreatic islets from MSG-rats showed higher insulin secretion in response to low (2.8) and moderate (8.3 mM) concentrations of glucose than those from their control counterparts and no differences were observed between MSG-S and MSG-T rats. These results provide evidences that the hyperinsulinemia at low or moderate glucose concentrations observed in MSG-obese rats is, at least in part, a consequence of direct hypersecretion of the B cells and that chronic aerobic exercise is able to partially counteract the hyperinsulinemic state of these animals without disrupting glucose homeostasis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present study examines the effects of a hypercaloric diet on hepatic glucose metabolism of young rats, with and without monosodium glutamate (MSG) administration, and the association of these treatments with evaluating markers of oxidative stress. Male weaned Wistar rats (21 days old) from mothers fed with a hypercaloric diet or a normal diet, were divided into four groups (n=6): control (C) fed with control diet; (MSG) treated with MSG (4 mg/g) and control diet; (HD) fed with hypercaloric diet and (MSG-HD) treated with MSG and HD. Rats were sacrificed after the oral glucose tolerance test (OGTT), at 45 days of treatments. Serum was used for insulin determination. Glycogen, hexokinase(HK), glucose-6-phosphatase(G6PH), lipid hydroperoxide, superoxide dismutase(SOD) and glutathione peroxidase(GSH-Px) were determined in liver. HD rats showed hypoglycemia, hyperinsulinemia, and high hepatic glycogen, HK and decreased G6PH. MSG and MSG-HD had hyperinsulinemia, hyperglycemia, decreased HK and increased G6PH in hepatic tissue. These animals had impaired OGTT. HD, MSG and MSG-HD groups had increased lipid hydroperoxide and decreased SOD in hepatic tissue. Hypercaloric diet and monosodium glutamate administration induced alterations in metabolic rate of glucose utilization and decreased antioxidant defenses. Therefore, the hepatic glucose metabolic shifting induced by HD intake and MSG administration were associated with oxidative stress in hepatic tissue.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: This study determined the effects of adding monosodium glutamate (MSG) to a standard diet and a fiber-enriched diet on glucose metabolism, lipid profile, and oxidative stress in rats. Methods: Male Wistar rats (65 ± 5 g, n = 8) were fed a standard diet (control), a standard diet supplemented with 100 g of MSG per kilogram of rat body weight, a diet rich in fiber, or a diet rich in fiber supplemented with 100 g of MSG per kilogram of body weight. After 45 d of treatment, sera were analyzed for concentrations of insulin, leptin, glucose, triacylglycerol, lipid hydroperoxide, and total antioxidant substances. A homeostasis model assessment index was estimated to characterize insulin resistance. Results: Voluntary food intake was higher and feed efficiency was lower in animals fed the standard diet supplemented with MSG than in those fed the control, fiber-enriched, or fiber- and MSG-enriched diet. The MSG group had metabolic dysfunction characterized by increased levels of glucose, triacylglycerol, insulin, leptin, and homeostasis model assessment index. The adverse effects of MSG were related to an imbalance between the oxidant and antioxidant systems. The MSG group had increased levels of lipid hydroperoxide and decreased levels of total antioxidant substances. Levels of triacylglycerol and lipid hydroperoxide were decreased in rats fed the fiber-enriched and fiber- and MSG-enriched diets, whereas levels of total antioxidant substances were increased in these animals. Conclusions: MSG added to a standard diet increased food intake. Overfeeding induced metabolic disorders associated with oxidative stress in the absence of obesity. The fiber-enriched diet prevented changes in glucose, insulin, leptin, and triacylglycerol levels that were seen in the MSG group. Because the deleterious effects of MSG, i.e., induced overfeeding, were not seen in the animals fed the fiber-enriched diets, it can be concluded that fiber supplementation is beneficial by discouraging overfeeding and improving oxidative stress that is induced by an MSG diet. © 2005 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Administration of biomacromolecular drugs in effective quantities from conventional vaginal rings is hampered by poor drug permeability in the polymers from which rings are commonly constructed. Here, we report the formulation development and testing of rod insert rings for sustained release of the candidate antiretroviral peptides T-1249 and JNJ54310516-AFP (JNJ peptide), both of which have potential as HIV microbicides. Rod inserts were prepared comprising antiviral peptides T-1249 or JNJ peptide in combination with a hydrophilic excipient (sodium chloride, sodium glutamate, lactose or zinc acetate) dispersed at different loadings within a medical grade silicone elastomer. The inserts were tested for weight change and swelling when immersed in simulated vaginal fluid (SVF). Dye migration into the inserts was also assessed visually over 28 days. In vitro release of T-1249 and JNJ peptide from rings containing various insert types was tested. Weight change and degree of swelling of rods immersed in SVF was dependent on the type and concentration of excipient present. The rods displayed the following rank order in terms of weight change: sodium glutamate > zinc acetate ≈ sodium chloride > lactose. The weight change and degree of swelling of the inserts did not correlate with the level of dye uptake observed. In vitro release of T-1249 was improved through addition of lactose, sodium chloride and sodium glutamate, while release of JNJ peptide was improved through addition of sodium chloride or sodium glutamate. Sustained release of hydrophobic peptides can be achieved using a rod insert ring design formulated to include a hydrophilic excipient. Release rates were dependent upon the type of excipient used. The degree of release improvement with different inserts partially reflects their ability to imbibe surrounding fluid and swell in aqueous environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel artificial antibody for troponin T (TnT) was synthesized by molecular imprint (MI) on the surface of multiwalled carbon nanotubes (MWCNT). This was done by attaching TnT to the MWCNT surface, and filling the vacant spaces by polymerizing under mild conditions acrylamide (monomer) in N,N′-methylenebisacrylamide (cross-linker) and ammonium persulphate (initiator). After removing the template, the obtained biomaterial was able to rebind TnT and discriminate it among other interfering species. Stereochemical recognition of TnT was confirmed by the non-rebinding ability displayed by non-imprinted (NI) materials, obtained by imprinting without a template. SEM and FTIR analysis confirmed the surface modification of the MWCNT. The ability of this biomaterial to rebind TnT was confirmed by including it as electroactive compound in a PVC/plasticizer mixture coating a wire of silver, gold or titanium. Anionic slopes of 50 mV decade−1 were obtained for the gold wire coated with MI-based membranes dipped in HEPES buffer of pH 7. The limit of detection was 0.16 μg mL−1. Neither the NI-MWCNT nor the MWCNT showed the ability to recognize the template. Good selectivity was observed against creatinine, sucrose, fructose, myoglobin, sodium glutamate, thiamine and urea. The sensor was tested successfully on serum samples. It is expected that this work opens new horizons on the design of new artificial antibodies for complex protein structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Myoglobin (Mb) is among the cardiac biomarkers playing a major role in urgent diagnosis of cardiovascular diseases. Its monitoring in point-of-care is therefore fundamental. Pursuing this goal, a novel biomimetic ionophore for the potentiometric transduction of Mb is presented. It was synthesized by surface molecular imprinting (SMI) with the purpose of developing highly efficient sensor layers for near-stereochemical recognition of Mb. The template (Mb) was imprinted on a silane surface that was covalently attached to silica beads by means of self-assembled monolayers. First the silica was modified with an external layer of aldehyde groups. Then, Mb was attached by reaction with its amine groups (on the external surface) and subsequent formation of imine bonds. The vacant places surrounding Mb were filled by polymerization of the silane monomers 3-aminopropyltrimethoxysilane (APTMS) and propyltrimethoxysilane (PTMS). Finally, the template was removed by imine cleavage after treatment with oxalic acid. The results materials were finely dispersed in plasticized PVC selective membranes and used as ionophores in potentiometric transduction. The best analytical features were found in HEPES buffer of pH 4. Under this condition, the limits of detection were of 1.3 × 10−6 mol/L for a linear response after 8.0 × 10−7 mol/L with an anionic slope of −65.9 mV/decade. The imprinting effect was tested by preparing non-imprinted (NI) particles and employing these materials as ionophores. The resulting membranes showed no ability to detect Mb. Good selectivity was observed towards creatinine, sacarose, fructose, galactose, sodium glutamate, and alanine. The analytical application was conducted successfully and showed accurate and precise results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neonatal administration of monosodium glutamate (MSG) in rats causes definite neuroendocrine disturbances which lead to alterations in many organ systems. The possibility that MSG could affect tooth and salivary gland physiology was examined in this paper. Male and female pups were injected subcutaneously with MSG (4 mg/g BW) once a day at the 2nd, 4th, 6th, 8th and 10th day after birth. Control animals were injected with saline, following the same schedule. Lower incisor eruption was determined between the 4th and the 10th postnatal days, and the eruption rate was measured between the 43rd and the 67th days of age. Pilocarpine-stimulated salivary flow was measured at 3 months of age; protein and amylase contents were thereby determined. The animals treated with MSG showed significant reductions in the salivary flow (males, -27%; females, -40%) and in the weight of submandibular glands (about -12%). Body weight reduction was only about 7% for males, and did not vary in females. Saliva of MSG-treated rats had increased concentrations of total proteins and amylase activity. The eruption of lower incisors occurred earlier in MSG-treated rats than in the control group, but on the other hand the eruption rate was significantly slowed down. The incisor microhardness was found to be lower than that of control rats. Our results show that neonatal MSG treatment causes well-defined oral disturbances in adulthood in rats, including salivary flow reduction, which coexisted with unaltered protein synthesis, and disturbances of dental mineralization and eruption. These data support the view that some MSG-sensitive hypothalamic nuclei have an important modulatory effect on the factors which determine caries susceptibility.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exercise training is often recommended in prevention and treatment of obesity. The present study was designed to compare the effects of intermittent and continuous exercise on weight loss and carcass composition in obese rats. Obese male Wistar rats (monosodium glutamate [MSG] administration, 4 mg/g of body weight every other day from birth to 14 days old) were used. After drug administration, the rats were separated into three groups: MSG-SED (sedentary), MSG-CONT (continuous, swimming, 45 min/day, 5 days/week, with and overload of 5% body weight for 12 weeks) and MSG-INT (intermittent, 15s swimming intermitted by 15s rest, during 45 min, 5 days/week, with and overload of 15% body weight for 12 weeks). Rats of the same age and strain, administered with saline were used as control (SAL), and subdivided into three groups: SAL-SED, SAL-CONT and SAL-INT. The animals were evaluated at the 10 weeks of training and 8 weeks of its interruption. MSG rats showed higher carcass fat as well as weight and cell size in epididymal adipose tissue than SAL rats, indicting the efficacy of the drug in producing obesity. Intermittent training protocol led to a reduction in blood lactate accumulation during acute exercise and both protocols reduced body weight gain during the experiment in MSG rats. After 8 weeks of training interruption no differences were observed among groups in the examined parameters. Only intermittent exercise training improved aerobic fitness but both protocols were similarly efficient in determining weight loss. However, the effects were transitory, since they disappeared after detraining.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this thesis was to investigate the electrical and mechanical responses to inhibitory non-adrenergic noncholinergic (NANC) nerve stimulation in the bovine retractor penis muscle (BRP) and compare them with those to an inhibitory extract made from this muscle. The extract may contain the NANC inhibitory transmitter of the BRP and possibly of other smooth muscles. Because of species differences in the electrical response to NANC nerves in the rat and rabbit anococcygeus the effects of the extract on these tissues was also investigated. Prior to the investigation of the extract, both the excitatory and inhibitory responses to field stimulation in the BRP, and the effects of passive membrane potential displacement were studied using conventional intra- or extracellular (sucrose gap) recording techniques. The majority of cells in the BRP were electrically quiescent independent of the resting tone. The most frequent (in approximately 25% of preparations) form of spontaneous activity, oscillations in membrane potential and tone, may represent a pacemaker activity. The BRP had cable properties; the time constant and space constant indicated a high membrane resistance. In the absence of tone, field stimulation of the BRP evoked excitatory junction potentials (ejps) in every cell impaled and contractions, graded with the strength, frequency and number of pulses; spikes were not observed. Guanethidine (1-3 x 10-5M) abolished the ejps and contractions, confirming their adrenergic origin. Noradrenaline added exogenously depolarised and contracted the muscle. These effects were blocked by the a-adrenoceptor antagonists, phentolamine and prazosin. However, phentolamine (2.5x 10-6M) inhibited the contraction without reducing the ejp significantly. These effects may be independent of adrenoceptor blockade or the ejp may be mediated by a substance other than noradrenaline (e.g. ATP) released from adrenergic nerves. Prazosin (1.4 x lO-6M) failed to block either the ejp or contraction, indicating the possible existence of two types of adrenoceptor in the BRP; one activated by neuronally-released and the other by exogenously-added noradrenaline. ATP, a contaminant in the extract, also depolarised and contracted the BRP. Physostigmine reduced whilst atropine enhanced the ejps and contractions without similarly affecting the response to exogenous noradrenaline. This confirmed the presence of a cholinergic inhibitory innervation acting on the excitatory adrenergic fibres (Klinge and Sjostrand, 1977). TEA (1 x lO-4M) enhanced the ejp and contraction. Higher concentrations (0.5 to 10 x 10-3M) depolarised, increased the tone and evoked electrical and mechanical oscillations but no spikes. The depolarisation and contraction to exogenous noradrenaline were not enhanced, indicating that TEA acts on the adrenergic nerves. Some post-synaptic effect to block K+ channels also seems likely. The relationship between ejp amplitude and membrane potential in the double sucrose gap was linear and indicated a reversal potential more positive than -30mV. Electrotonic pulse amplitude decreased during the ejp, indicating an increased membrane conductance. Ejps and contractions were reduced following the replacement of the NaCl of the Krebs solution with sodium glutamate. This may be due to the effects of glutamate itself (e.g. Ca2+ chelation) rather than reduction in the membrane Cl- gradient. Tone usually developed spontaneously and was accompanied by membrane depolarisation (from -53 to -45mV) which may open voltage-dependent channels, causing Ca2+ entry and/or its release from intracellular binding sites. Field stimulation produced inhibitory potentials (ijps) and relaxations graded with the strength and number of pulses but showing little frequency dependence. Rebound depolarisation and contraction often followed the ijp and relaxation. Tetrodotoxin (3 x IO-6M), but not adrenergic or cholinergic antagonists, abolished the ijp and relaxation, confirming their non-adrenergic non-cholinergic neurogenic nature. The extract, prepared and acid-activated as described by Gillespie, Hunter and Martin (1981), hyperpolarised and relaxed the BRP, as did sodium nitroprusside and adenosine triphosphate (ATP). Unlike the activated extract or sodium nitroprusside, desensitisation to ATP occurred rapidly and without any change in the inhibitory electrical or mechanical responses to field stimulation. The ijp and relaxation in the BRP were insensitive to apamin but abolished by oxyhaemoglobin (4-8 x 10-6M), as were the responses to extract and sodium nitroprusside. In TEA (10-2M), field stimulation evoked relaxations with no accompanying electrical change. The ijp may be unconnected with or additional to another mechanism producing relaxation. The relationship between membrane potential and ijp in the BRP was non-linear. Ijp amplitude was initially increased during membrane potential displacement from -45mV to approximately -60mV. Thereafter (-60 to -l03mV) the ijp was reduced. Ijps were abolished at -27 and -103mV; reversal was not observed. The hyperpolarisation to extract was also enhanced during passive displacement of the membrane potential to more negative values (-57mV). Membrane resistance increased during the ijp. The extract produced inconsistent changes in membrane resistance, possibly because of the presence of more than one active component. K+ withdrawal failed to enhance the ijp or hyperpolarisation to extract and 20mM K+ did not abolish the the ijp at membrane potentials exceeding EK (-49mV). Thus, the ijp or hyperpolarisation to extract are unlikely to be mediated by an increased K+ conductance. Reducing the Cl- abolished the hyperpolarisation to field stimulation and extract. This occurred more quickly than the anticipated reduction in the Cl- gradient and may be due to Ca2+ chelation by the anion substitute (glutamate or benzenesulphonate) or blockade of the resting conductance which is normally inactivated by the transmitter. Ouabain (1-5x 10-5M), which reduces both the Na+ and Cl- gradients, abolished the ijp, implicating either of these ions as the ionic species involved. In the rat and rabbit anococcygeus, field stimulation and extract each reduced guanethidine-induced tone. This was unaccompanied in the majority of cells in the rat by any significant electrical response. In the remaining cells, inhibition of the membrane potential oscillations occurred. The rabbit anococcygeus differed in that inhibition of the electrical oscillations was observed in every cell exhibiting this behaviour. However, the majority of cells in the rabbit were electrically quiescent and showed only small hyperpolarisations to field stimulation and no electrical response to extract. Apamin (1 x 10-7M) failed to block the electrical and mechanical response to field stimulation in the rabbit but did inhibit transiently that to extract. The latter effect may be due to the initial excitatory effects of apamin. The similarities between the electrical effects of the extract and those of inhibitory nerve stimulation in the BRP, rat and rabbit anococcygeus muscles are generally consistent with their being mediated by the same active component. Moreover, the ijp in the BRP shows properties which have not been reported in other non-adrenergic noncholinergically innervated smooth muscles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There has been broad concern that arsenic in the environment exerts neurotoxicity. To determine the mechanism by which arsenic disrupts neuronal development, primary cultured neurons obtained from the cerebral cortex of mouse embryos were exposed to sodium arsenite (NaAsO2) at concentrations between 0 and 2μM from days 2 to 4 in vitro and cell survival, neurite outgrowth and expression of glutamate AMPA receptor subunits were assessed at day 4 in vitro. Cell survival was significantly decreased by exposure to 2μM NaAsO2, whereas 0.5μM NaAsO2 increased cell survival instead. The assessment of neurite outgrowth showed that total neurite length was significantly suppressed by 1μM and 2μM NaAsO2, indicating that the lower concentration of NaAsO2 impairs neuritogenesis before inducing cell death. Immunoblot analysis of AMPA receptor subunit expression showed that the protein level of GluA1, a specific subunit of the AMPA receptor, was significantly decreased by 1μM and 2μM NaAsO2. When immunocytochemistry was used to confirm this effect by staining for GluA1 expression in neuropeptide Y neurons, most of which contain GluA1, GluA1 expression in neuropeptide Y neurons was found to be significantly suppressed by 1μM and 2μM NaAsO2 but to be increased at the concentration of 0.5μM. Finally, to determine whether neurons could be rescued from the NaAsO2-induced impairment of neuritogenesis by compensatory overexpression of GluA1, we used primary cultures of neurons transfected with a plasmid vector to overexpress either GluA1 or GluA2, and the results showed that GluA1/2 overexpression protected against the deleterious effects of NaAsO2 on neurite outgrowth. These results suggest that the NaAsO2 concentration inducing neurite suppression is lower than the concentration that induces cell death and is the same as the concentration that suppresses GluA1 expression. Consequently, the suppression of GluA1 expression by NaAsO2 seems at least partly responsible for neurite suppression induced by NaAsO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The X-ray crystal structures of two crystalline forms of 5-(2,3,5-trichlorophenyl)-2,4-diaminopyrimidine, C10H7Cl3N4 (code name BW1003C87) (I) and (II), have been carried out at liquid nitrogen temperature. A detailed comparison of the two structures is given. Both are centrosymmetric, with structure (I) in the triclinic space group P (1) over bar unit cell a = 6.4870(10), b = 9.216(2), c = 12.016(2) angstrom, alpha = 75.78(3)degrees, beta = 89.95(3)degrees, gamma = 83.45(3)degrees, V = 691.5(2) angstrom(3), Z = 2 and density (calculated) = 1.544 Mg/m(3); and (II) in the monoclinic space group P2(1)/c, unit cell a = 12.000(2), b = 7.518(2), c = 13.450(3) angstrom, beta = 97.87(3)degrees, V = 1202.0(5) angstrom(3), Z = 4, Density (calculated) = 1.600 Mg/m(3). Structure (I) includes a solvated CH3OH in the lattice. Final R indices [I > 2sigma(I)] are R1 = 0.0427, wR2 = 0.1075 for (I) and R1 = 0.0487, wR2 = 0.1222 for (II). R indices (all data) are R1 = 0.0470, wR2 = 0.1118 for (I) and R1 = 0.0623, wR2 = 0.1299 for (II). 5-Phenyl-2,4 diaminopyrimidine and 6-phenyl-1,2,4 triazine derivatives, which include lamotrigine (3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazine), have been investigated for some time for their effects on the central nervous system. Both lamotrigine and 5-(2,3,5-trichlorophenyl)-2,4-diaminopyrimidine (code name BW1003C87), the subject of the present study, are anticonvulsant as well as neuroprotective in models of brain ischaemia and in a model of white matter ischaemia. BW1003C87 is a sodium channel blocker which also reduces the release of the neurotransmitter glutamate. The three dimensional structures reported here form part of a newly developed data base for the detailed investigation of members of this drug family and their biological activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The excitatory amino acid transporters (EAAT) removes neurotransmitters glutamate and aspartate from the synaptic cleft. Most CNS glutamate uptake is mediated by EAAT2 into glia, though nerve terminals show evidence for uptake, through an unknown transporter. Reverse-transcriptase PCR identified the expression of EAAT1, EAAT2, EAAT3 and EAAT4 mRNAs in primary cultures of mouse cortical or striatal neurones. We have used synaptosomes and glial plasmalemmal vesicles (GPV) from adult mouse and rat CNS to identify the nerve terminal transporter. Western blotting showed detectable levels of the transporters EAAT1 (GLAST) and EAAT2 (Glt-1) in both synaptosomes and GPVs. Uptake of [3H]D-aspartate or [3H]L-glutamate into these preparations revealed sodium-dependent uptake in GPV and synaptosomes which was inhibited by a range of EAAT blockers: dihydrokainate, serine-o-sulfate, l-trans-2,4-pyrrolidine dicarboxylate (PDC) (+/-)-threo-3-methylglutamate and (2S,4R )-4-methylglutamate. The IC50 values found for these compounds suggested functional expression of the 'glial, transporter, EAAT2 in nerve terminals. Additionally blockade of the majority EAAT2 uptake sites with 100 micro m dihydrokainate, failed to unmask any functional non-EAAT2 uptake sites. The data presented in this study indicate that EAAT2 is the predominant nerve terminal glutamate transporter in the adult rodent CNS.