972 resultados para Small x QCD


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within a QCD-based eikonal model with a dynamical infrared gluon mass scale we discuss how the small x behavior of the gluon distribution function at moderate Q(2) is directly related to the rise of total hadronic cross-sections. In this model the rise of total cross-sections is driven by gluon-gluon semihard scattering processes, where the behavior of the small x gluon distribtuion function exhibits the power law xg(x, Q(2)) = h(Q(2))x(-epsilon). Assuming that the Q(2) scale is proportional to the dynamical gluon mass one, we show that the values of h(Q(2)) obtained in this model are compatible with an earlier result based on a specific nonperturbative Pomeron model. We discuss the implications of this picture for the behavior of input valence-like gluon distributions at low resolution scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within a QCD-based eikonal model with a dynamical infrared gluon mass scale we discuss how the small x behavior of the gluon distribution function at moderate Q 2 is directly related to the rise of total hadronic cross-sections. In this model the rise of total cross-sections is driven by gluon-gluon semihard scattering processes, where the behavior of the small x gluon distribution function exhibits the power law xg(x, Q 2) = h(Q 2)x( -∈). Assuming that the Q 2 scale is proportional to the dynamical gluon mass one, we show that the values of h(Q 2) obtained in this model are compatible with an earlier result based on a specific nonperturbative Pomeron model. We discuss the implications of this picture for the behavior of input valence-like gluon distributions at low resolution scales. © 2008 World Scientific Publishing Company.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss several methods of calculating the DIS structure functions F2(x,Q2) based on BFKL-type small x resummations. Taking into account new HERA data ranging down to small xand low Q2, the pure leading order BFKL-based approach is excluded. Other methods based on high energy factorization are closer to conventional renormalization group equations. Despite several difficulties and ambiguities in combining the renormalization group equations with small x resummed terms, we find that a fit to the current data is hardly feasible, since the data in the low Q2 region are not as steep as the BFKL formalism predicts. Thus we conclude that deviations from the (successful) renormalization group approach towards summing up logarithms in 1/x are disfavoured by experiment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been observed recently that a consistent LO BFKL gluon evolution leads to a steep growth of F2(x, Q2) for x → 0 almost independently of Q2. We show that current data from the DESY HERA collider are precise enough to finally rule out a pure BFKL behaviour in the accessible small x region. Several attempts have been made by other groups to treat the BFKL type small x resummations instead as additions to the conventional anomalous dimensions of the successful renormalization group “Altarelli-Parisi” equations. We demonstrate that all presently available F2 data, in particular at lower values of Q2, can not be described using the presently known NLO (two-loop consistent) small x resummations. Finally we comment on the common reason for the failure of these BFKL inspired methods which result, in general, in too steep >x-dependencies as x → 0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The predictions of Drell-Yan production of low-mass lepton pairs, at high rapidity at the LHC, are known to depend sensitively on the choice of factorization and renormalization scales. We show how this sensitivity can be greatly reduced by fixing the factorization scale of the LO contribution based on the known NLO matrix element, so that observations of this process at the LHC can make direct measurements of parton distribution functions in the low x domain; x less than or similar to 10(-4).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high parton density effects are strongly dependent of the spatial gluon distribution within the proton, with radius R, which cannot be derived from perturbative QCD. In this paper we assume that the unitarity corrections are present in the HERA kinematical region and constrain the value of R using the data for the proton structure function and its slope. We obtain that the gluons are not distributed uniformly in the whole proton disc, but behave as concentrated in smaller regions. (C) 2000 Elsevier Science B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Heavy quark production has been very well studied over the last years both theoretically and experimentally. Theory has been used to study heavy quark production in ep collisions at HERA, in pp collisions at Tevatron and RHIC, in pA and dA collisions at RHIC, and in AA collisions at CERN-SPS and RHIC. However, to the best of our knowledge, heavy quark production in eA has received almost no attention. With the possible construction of a high energy electron-ion collider, updated estimates of heavy quark production are needed. We address the subject from the perspective of saturation physics and compute the heavy quark production cross section with the dipole model. We isolate shadowing and nonlinear effects, showing their impact on the charm structure function and on the transverse momentum spectrum.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We calculate the nuclear cross section for coherent and incoherent vector meson production within the QCD color dipole picture, including saturation effects. Theoretical estimates for scattering on both light and heavy nuclei are given over a wide range of energy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We use the Kharzeev-Levin-Nardi (KLN) model of the low x gluon distributions to fit recent HERA data on F(L) and F(2)(c)(F(2)(b)). Having checked that this model gives a good description of the data, we use it to predict F(L) and F(2)(c) to be measured in a future electron-ion collider. The results are similar to those obtained with the de Florian-Sassot and Eskola-Paukkunen-Salgado nuclear gluon distributions. The conclusion of this exercise is that the KLN model, simple as it is, may still be used as an auxiliary tool to make estimates for both heavy-ion and electron-ion collisions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The exclusive processes in electron-ion (eA) interactions are an important tool to investigate the QCD dynamics at high energies as they are in general driven by the gluon content of the target which is strongly subject to parton saturation effects. In this Letter we compute the cross sections for the exclusive vector meson production as well as the deeply virtual Compton scattering (DVCS) relying on the color dipole approach and considering the numerical solution of the Balitsky-Kovchegov equation including running coupling corrections (rcBK). The production cross sections obtained with the rcBK solution and bCGC parametrization are very similar, the former being slightly larger. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A systematic determination of the gluon distribution is of fundamental interest in understanding the parton structure Of nuclei and the QCD dynamics. Currently, the behavior of this distribution at small x (high energy) is completely undefined. In this Letter we analyze the possibility of constraining the nuclear effects present in Xg(A) using the inclusive observables which would be measured in the future electron-nucleus collider at RHIC. We demonstrate that the Study of nuclear longitudinal and charm structure functions allows to estimate the magnitude of shadowing and antishadowing effects in the nuclear gluon distribution. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We expect to observe parton saturation in a future electron-ion collider. In this Letter we discuss this expectation in more detail considering two different models which are in good agreement with the existing experimental data on nuclear structure functions. In particular, we study the predictions of saturation effects in electron-ion collisions at high energies, using a generalization for nuclear targets of the b-CGC model, which describes the ep HERA quite well. We estimate the total. longitudinal and charm structure functions in the dipole picture and compare them with the predictions obtained using collinear factorization and modern sets of nuclear parton distributions. Our results show that inclusive observables are not very useful in the search for saturation effects. In the small x region they are very difficult to disentangle from the predictions of the collinear approaches. This happens mainly because of the large uncertainties in the determination of the nuclear parton distribution functions. On the other hand, our results indicate that the contribution of diffractive processes to the total cross section is about 20% at large A and small Q(2), allowing for a detailed study of diffractive observables. The study of diffractive processes becomes essential to observe parton Saturation. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Within the framework of a (1 + 1)-dimensional model which mimics high-energy QCD, we study the behavior of the cross sections for inclusive and diffractive deep inelastic gamma*h scattering cross sections. We analyze the cases of both fixed and running coupling within the mean-field approximation, in which the evolution of the scattering amplitude is described by the Balitsky-Kovchegov equation, and also through the pomeron loop equations, which include in the evolution the gluon number fluctuations. In the diffractive case, similarly to the inclusive one, suppression of the diffusive scaling, as a consequence of the inclusion of the running of the coupling, is observed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study some perturbative and nonperturbative effects in the framework of the Standard Model of particle physics. In particular we consider the time dependence of the Higgs vacuum expectation value given by the dynamics of the StandardModel and study the non-adiabatic production of both bosons and fermions, which is intrinsically non-perturbative. In theHartree approximation, we analyze the general expressions that describe the dissipative dynamics due to the backreaction of the produced particles. Then, we solve numerically some relevant cases for the Standard Model phenomenology in the regime of relatively small oscillations of the Higgs vacuum expectation value (vev). As perturbative effects, we consider the leading logarithmic resummation in small Bjorken x QCD, concentrating ourselves on the Nc dependence of the Green functions associated to reggeized gluons. Here the eigenvalues of the BKP kernel for states of more than three reggeized gluons are unknown in general, contrary to the large Nc limit (planar limit) case where the problem becomes integrable. In this contest we consider a 4-gluon kernel for a finite number of colors and define some simple toy models for the configuration space dynamics, which are directly solvable with group theoretical methods. In particular we study the depencence of the spectrum of thesemodelswith respect to the number of colors andmake comparisons with the planar limit case. In the final part we move on the study of theories beyond the Standard Model, considering models built on AdS5 S5/Γ orbifold compactifications of the type IIB superstring, where Γ is the abelian group Zn. We present an appealing three family N = 0 SUSY model with n = 7 for the order of the orbifolding group. This result in a modified Pati–Salam Model which reduced to the StandardModel after symmetry breaking and has interesting phenomenological consequences for LHC.