54 resultados para Slime
Resumo:
A habilidade de Candida spp secretar enzimas extracelulares e slime tem sido associada como fatores de patogenicidade. Do total de 37 cepas de Candida sp, 100% foram produtoras de proteinase, 83,8% fosfolipase, 64,9% slime e 100% sensíveis ao fluconazol e itraconazol. Foram encontradas 17 tipagens (enzima/slime). Esta metodologia apresentou um bom índice discriminatório (D=0,93) podendo ser utilizado na caracterização fenotípica das leveduras.
Resumo:
Slime and proteinase activity of 54 strains consisting of 19 Candida parapsilosis and 35 C. albicans strains isolated from blood samples were investigated in this study. Ketoconazole, amphothericin B, and fluconazole susceptibility of Candida species were compared with slime production and proteinase activity of these species. For both Candida species, no correlation was detected between the slime activity and minimum inhibitory concentration (MIC) values of the three antifungal agents. For both Candida species no correlation was detected between the proteinase activity and the MIC values of amphothericin B, and fluconazole however, statistically significant difference, was determined between the proteinase activity and MIC values of ketoconazole (p = 0.007). Slime production was determined by using modified Christensen macrotube method and proteinase activity was measured by the method of Staib. Antifungal susceptibility was determined through the guidelines of National Committee for Laboratory Standards (NCCLS M27-A).
Resumo:
A total of 187 isolates from several clinical specimens were identified to species level as 129 Staphylococcus aureus strains and 58 coagulase-negative staphylococci (CNS) strains by the API Staph System (Biomerieux). Slime production was detected both by the conventional Christensen's method as well as by the Congo red agar method. Seventy-two strains of staphylococci isolates (38.5%) were found to be slime producers by Christensen's test tube method whereas 58 strains (31%) were slime positive with Congo red agar method. There was no statistically significant difference between the two methods for the detection of slime production (P > 0.05). Susceptibility of isolates against antimicrobial agents was tested by the disk diffusion method. Staphylococcal species had resistance to one or more antibiotics. Among the various antimicrobial agents, oxacillin (71.1%) and erythromycin (47.1%) showed higher resistance than most of the agents used against all isolates. Oxacillin resistant S. aureus (ORSA) and oxacillin resistant coagulase-negative staphylococci (ORCNS), 97 (75.2%) and 36 (62.1%) respectively were frequently observed in strains isolated from clinical materials. Among the ORSA strains, two strains were resistant to vancomycin. Moreover, 96 (74.4%) of 129 S. aureus strains were positive for blactamase enzyme. However, 78 (81.25%) of 96 b-lactamase positive S. aureus strains were b-lactamase positive ORSA isolates, but none of them had vancomycin resistance.
Resumo:
Slime production is an important virulence factor of coagulase-negative Staphylococcus spp., allowing them to attach to smooth surfaces of biomaterials, and it has been associated with infections of implanted medical devices. In the present study the production of slime capsules in 27 strains of coagulase-negative Staphylococcus was investigated by culture in Congo Red agar (77.7% positivity), spectrophotometric or microplate method (81.4% positivity) and scanning electron microscopy (88.9% positivity). The resistance of coagulase-negative strains of Staphylococcus to various antimicrobial agents was also determined by agar disk diffusion. The proportion of strains resistant to penicillin G, oxacillin, erythromycin, clindamycin and gentamicin among the slime-producing staphylococci was 88.9%, 70.4%, 81.5%, 66.7% and 59.2%, respectively; all of the coagulase-negative staphylococci were susceptible to vancomycin. The strains isolated from central venous catheters were identified by a conventional method and the API Staph system. The 27 coagulase-negative Staphylococcus strains were identified as: S. saprophyticus (3.7%), S. xylosus (7.4%), S. haemolyticus (14.8%), S. epidermidis (37.0%), S. warneri (14.8%), S. lugdunensis (7.4%), S. hominis (7.4%), S. schleiferi (3.7%) and S. chromogenes (3.7%). It can be concluded that in the most of the coagulase-negative Staphylococcus species there was an association between slime production, the nosocomial origin of the strains and reduced sensitivity to the antibiotics, suggesting a pathogenic potential in the hospital environment.
Resumo:
The Mycetozoa include the cellular (dictyostelid), acellular (myxogastrid), and protostelid slime molds. However, available molecular data are in disagreement on both the monophyly and phylogenetic position of the group. Ribosomal RNA trees show the myxogastrid and dictyostelid slime molds as unrelated early branching lineages, but actin and β-tubulin trees place them together as a single coherent (monophyletic) group, closely related to the animal–fungal clade. We have sequenced the elongation factor-1α genes from one member of each division of the Mycetozoa, including Dictyostelium discoideum, for which cDNA sequences were previously available. Phylogenetic analyses of these sequences strongly support a monophyletic Mycetozoa, with the myxogastrid and dictyostelid slime molds most closely related to each other. All phylogenetic methods used also place this coherent Mycetozoan assemblage as emerging among the multicellular eukaryotes, tentatively supported as more closely related to animals + fungi than are green plants. With our data there are now three proteins that consistently support a monophyletic Mycetozoa and at least four that place these taxa within the “crown” of the eukaryote tree. We suggest that ribosomal RNA data should be more closely examined with regard to these questions, and we emphasize the importance of developing multiple sequence data sets.
Resumo:
We have found a predator-prey association between the social amoeba Dictyostelium discoideum and the free soil living nematode Caenorhabditis elegans. C. elegans feeds on the amoebae and multiplies indefinitely when amoebae are the sole food source. In an environment created from soil, D. discoideum grows and develops, but not in the presence of C. elegans. During development, C. elegans feeds on amoebae until they aggregate and synthesize an extracellular matrix called the slime sheath. After the sheath forms, the aggregate and slug are protected. Adult nematodes ingest Dictyostelium spores, which pass through the gut of the worm without loss of structure and remain viable. Nematodes kill the amoebae but disperse the spores. The sheath that is constructed when the social amoebae aggregate and the spore coats of the individual cells may protect against this predator. Individual amoebae may also protect themselves by secreting compounds that repel nematodes.
Resumo:
Includes bibliographical references (p. 69-71).
Resumo:
"12/05"--Colophon.
Resumo:
Conservation of U.S. coral reefs has been sidetracked by the partial implementation of management plans without clearly achievable goals. Historical ecology reveals global patterns of coral reef degradation that provide a framework for reversing reef decline with ecologically meaningful metrics for success. The authors of this Policy Forum urge action now to address multiple threats simultaneously, because the harmful effects of stressors like overfishing, pollution, poor land-use practices, and global warming are interdependent. Prompt implementation of proven, practical solutions would lead to both short- and long-term benefits, including the return of keystone species and the economic benefits they entail.
Resumo:
The present study was carried out on six different ore types from the Salitre Alkaline Complex aiming to determine their mineralogical composition and the major features that are relevant in the mineral processing. The P(2)O(5) grades vary from 9 to 25%. The slime content (-0, 020 mm) varies between 20 and 34% (w/w) and carries 17-22% of the P(2)O(5) content. The samples essentially consist of apatite, iron oxi-hydroxides, ilmenite, clay minerals, carbonate, quartz, pyroxene, perovskite, secondary phosphates and other minor accessory minerals. Below 0.21 mm, apatite essentially occurs in free particles showing a clean surface or a weak coating of it-on oxi-hydroxides; the highly covered apatite (not recoverable by flotation) varies from 6 to 9%. In the deslimed fraction (above 0.020 mm) more than 97% of the total phosphor content occurs as apatite; the estimated P 2 0 5 potential recovery in flotation concentration is over 90% (71-76% overall recovery).