112 resultados para Skulls.
Resumo:
The caroticoclinoid foramen is an inconstant structure, formed by the union of the anterior and middle clinoid processes. The aim of this study was to perform an incidence and morphometry of the caroticoclinoid foramen in Brazilian human skulls and discuss its clinical implications. Eighty dry human skulls with sex distinction were used, and 3 groups of incidence were determined: General, sex, and sides. The morphometry was performed using a manual caliper and the major diameter of the foramina was measured; the values were also divided in general, according to sex and sides. The incidence of skulls with at least one foramen was 8.5%. According to the sides, 8.5% of the skulls showed foramen on the right side and 2.5% on the left. We found 2.5% of the skulls with bilateral foramen and 6.25% with unilateral foramen. In relation to sex, the foramens were found in 5% of male skulls and 12.5% of female skulls. The major diameter of this structure presented on mean, values of 5.23 mm on general, 5.18 mm on the right side and 5.35 mm on the left, 5.30 mm in male skulls and 5.18 mm in female skulls. The anatomical characteristics of this foramen should be considered in view of its clinical implications associated with neurosurgery as clinoid process removal, and symptoms as headache due to internal carotid artery alterations in this region. In conclusion knowledge of this structure supports the diagnosis and treatment of clinical complications related to this variation.
Resumo:
The aim of this investigation was to evaluate the osteoinductive property of autogenous demineralized dentin matrix (ADDM) on experimental surgical bone defects in the parietal bone of rabbits using the guided bone regeneration (GBR) technique incorporating human amniotic membrane (HAM). Thirty-six rabbits were divided into 2 groups, HAM and ADDM+HAM. It was possible to conclude that HAM did not interfere with bone repair and was resorbed. Slices of ADDM induced direct bone formation and were incorporated by the newly formed bone tissue and remodeled. The bone defects healed faster in the ADDM+HAM group than in the group with HAM only.
Resumo:
The objective of this study was to determine the mean distance between the infraorbital foramen and the infraorbital margin, as well as the mean distance between the infraorbital foramen and the piriform aperture on both sides of dry human skulls, with the aim of improving the efficiency in clinical situations, such as surgery and anesthetic procedures. Two hundred ninety-five skulls were used (590 sides), located in the Frankfurt Plane through a craniostat. The measurements were collected by two distinct operators, with a dry tip compass and carried to a caliper. The general mean obtained between the infraorbital foramen and the infraorbital margin was 6.37 mm (±1.69 mm), with a mean of 6,28 mm (±1.79 mm) on the right side and 6.45 mm (±1.76 mm) on the left side. The general mean obtained between the infraorbital foramen and the piriform aperture was 17.67 mm (±1.95 mm), being 17.75 mm (±2.10 mm) on the right side and 17.60 mm (±2.04 mm) on the left side. There were statistically significant differences between the right and left distances of the infraorbital foramen and the infraorbital margin, verified by the Student's-t test. The results of this study allow a more precise location of the infraorbital foramen, particularly as regards the infraorbital margin, since this distance is of relevant importance as a repair point during surgical procedures involving this anatomical structure.
Resumo:
The ossified pterygoalar ligament is formed between the lateral lamina of the pterygoid process and the infratemporal surface of the sphenoid bone or its greater wing and was not connected to the sphenoid spine. The aim of this study was to evaluate the incidence of the ossified pterygoalar ligament in Brazilian human skulls and analyzing its clinical importance. 183 Brazilian adult (between 30 to 60 years old) dry human skulls were evaluated. Was evaluated the incidence of skulls with complete or partial ossification of the pterygoalar ligament, bilaterally and unilaterally and in the presence on the right and left sides. Were found 5 skulls had the ossified pterygoalar ligament, resulting in an overall incidence of 2.73%. There was 1 skull in the presence of the incomplete ossification of the pterygoalar ligament, unilaterally and on the left side resulting in incidence of 0.54%. There were 4 skulls in the presence of the complete ossification of the pterygoalar ligament, unilaterally and on the right side resulting in incidence of 2.18%. The ossified pterygoalar ligament is a major cause of the entrapment of the lingual nerve or a branch of the mandibular nerve and may cause mandibular neuralgia. The incidence of the ossified pterygoalar ligament and the pterygoalar foramen is low in the Brazilian population. However, these structures have clinical significance as this ligament establish relationships with the ovale foramen and difficulty in accessing in this foramen in a therapeutic approach.
Resumo:
Introduction: The retroarticular process is a bony prominence formed by the thickening of the lateral border of the mandibular fossa, forming the posterior wall of the temporomandibular joint. Since little is known and discussed about the retroarticular process, our aim was to study its presence, shape and size, relating these findings to the shape of the skulls according to the horizontal cephalic index. Materials and Methods: We used 400 dry human skulls of the Institute of Science and Technology - UNESP Anatomy Laboratory. Each skull was classified in brachycranics, mesocranics or dolichocranics, and then positioned on a craneostat to measure the height of the retroarticular process from its lower extremity to the auriculo-orbital plane. The width was obtained by measuring the base of the process on its longer lateral axis. Results: The retroarticular process was found bilaterally in 397 skulls (99.25%). All the processes were classified into the following shapes: pyramidal (35.55%), tubercular (31.78%), mammilar (20.73%), crest-like (9.05%) and molar shape (2.89%); 254 skulls (63.50%) showed the same type of process at the right and left sides (Kappa=0.496, moderate agreement). The average height and width were 5.28 mm and 12.81 mm, respectively. Conclusion: The retroarticular process was found in almost all the skulls examined. There are no significant evidences about the relationship among the presence, shape and size of the retroarticular process and the shape of the skulls according to the horizontal cephalic index. However, our findings led us to infer that there would be a functional relationship between the process and the temporomandibular joint.
Resumo:
The objective of this work was to study the morphology and biometry of the infraorbital foramen (FIO), variations in its shape, size and number as well as to obtain measurements of its location. 60 dry skulls were analyzed. The test of Qui-quadrant and the T Test were used in measurements with a 5% significance. On the right side, the FIO was measured at a distance of 6.49(+/- 1.68) mm from the lower, 39.65(+/- 3) mm from the upper, 17.7(+/- 2.97) mm from the medial and 20.46(+/- 2.9) mm from the lateral margin of the orbit; its pear-shaped opening distance was 13.67(+/- 2.17) mm. On the left side, the distance of the FIO to the lower margin of the orbit was 6.52(+/- 1.82) mm; to the upper margin was 39.9(+/- 2.62) mm and to the lateral and medial margin were 17.93(+/- 2.58) mm and 21.12(+/- 3) mm, respectively; its distance to the pear-shaped opening was 14.26(+/- 1.83) mm. It was found predominately in an oval shape, in 39 (65%) of the skulls, on both sides. Accessory foramens were present in 11 samples on the right and in 15 samples on the left side. The FIO was most frequently found on the side of, or laterally to the sagittal plane that passes through the middle of the supraorbital foramen/incisures, in 38 skulls (63.3%) on the right side and in 45 skulls (75%) on the left and middle to the zigomatic-maxillary suture, in 41 skulls (68.3%) on right and in 42 skulls (70%) on the left side, besides being most frequently found in a region between the first and second premolars, in 22 skulls (36.7%) on the right side and in 17 skulls (28.3%) on the left.
Resumo:
The purpose of this study was to evaluate whether measurements on conventional cephalometric radiographs are comparable with 3D measurements on 3D models of human skulls, derived from cone beam CT (CBCT) data. A CBCT scan and a conventional cephalometric radiograph were made of 40 dry skulls. Standard cephalometric software was used to identify landmarks on both the 2D images and the 3D models. The same operator identified 17 landmarks on the cephalometric radiographs and on the 3D models. All images and 3D models were traced five times with a time-interval of 1 week and the mean value of repeated measurements was used for further statistical analysis. Distances and angles were calculated. Intra-observer reliability was good for all measurements. The reproducibility of the measurements on the conventional cephalometric radiographs was higher compared with the reproducibility of measurements on the 3D models. For a few measurements a clinically relevant difference between measurements on conventional cephalometric radiographs and 3D models was found. Measurements on conventional cephalometric radiographs can differ significantly from measurements on 3D models of the same skull. The authors recommend that 3D tracings for longitudinal research are not used in cases were there are only 2D records from the past.
Resumo:
The aim of this study was to evaluate whether measurements performed on conventional frontal radiographs are comparable to measurements performed on three-dimensional (3D) models of human skulls derived from cone beam computed tomography (CBCT) scans and if the latter can be used in longitudinal studies. Cone beam computed tomography scans and conventional frontal cephalometric radiographs were made of 40 dry human skulls. From the CBCT scan a 3D model was constructed. Standard cephalometric software was used to identify landmarks and to calculate ratios and angles. The same operator identified 10 landmarks on both types of cephalometric radiographs, and on all images, five times with a time interval of 1 wk. Intra-observer reliability was acceptable for all measurements. There was a statistically significant and clinically relevant difference between measurements performed on conventional frontal radiographs and on 3D CBCT-derived models of the same skull. There was a clinically relevant difference between angular measurements performed on conventional frontal cephalometric radiographs, compared with measurements performed on 3D models constructed from CBCT scans. We therefore recommend that 3D models should not be used for longitudinal research in cases where there are only two-dimensional (2D) records from the past.
Resumo:
This study evaluated whether measurements on conventional frontal radiographs are comparable with measurements on cone beam computed tomography (CBCT)-constructed frontal cephalometric radiographs taken from dry human skulls. CBCT scans and conventional frontal cephalometric radiographs were made of 40 dry skulls. With I-Cat Vision((R)) software, a cephalometric radiograph was constructed from the CBCT scan. Standard cephalometric software was used to identify landmarks and calculate ratios and angles. The same operator identified 10 landmarks on both types of cephalometric radiographs on all Images 5 times with a time-interval of 1 week. Intra-observer reliability was acceptable for all measurements. The reproducibility of the measurements on the frontal radiographs obtained from the CBCT scans was higher than those on conventional frontal radiographs. There is a statistically significant and clinically relevant difference between measurements on conventional and constructed frontal radiographs. There is a clinically relevant difference between angular measurements performed on conventional frontal cephalometric radiographs, compared with measurements on frontal cephalometric radiographs constructed from CBCT scans, owing to different positioning of patients in both devices. Positioning of the patient in the CBCT device appears to be an important factor in cases where a 2D projection of the 3D scan is made.