947 resultados para Single cell analysis
Resumo:
Immune protection from infectious diseases and cancer is mediated by individual T cells of different clonal origin. Their functions are tightly regulated but not yet fully characterized. Understanding the contribution of each T cell will improve the prediction of immune protection based on laboratory assessment of T-cell responses. Here we developed techniques for simultaneous molecular and functional assessment of single CD8 T cells directly ex vivo. We studied two groups of patients with melanoma after vaccination with two closely related tumor antigenic peptides. Vaccination induced T cells with strong memory and effector functions, as found in virtually all T cells of the first patient group, and fractions of T cells in the second group. Interestingly, high functionality was not restricted to dominant clonotypes. Rather, dominant and nondominant clonotypes acquired equal functional competence. In parallel, this was also found for EBV- and CMV-specific T cells. Thus, the nondominant clonotypes may contribute similarly to immunity as their dominant counterparts.
Resumo:
Flow cytometry (FCM) is emerging as an important tool in environmental microbiology. Although flow cytometry applications have to date largely been restricted to certain specialized fields of microbiology, such as the bacterial cell cycle and marine phytoplankton communities, technical advances in instrumentation and methodology are leading to its increased popularity and extending its range of applications. Here we will focus on a number of recent flow cytometry developments important for addressing questions in environmental microbiology. These include (i) the study of microbial physiology under environmentally relevant conditions, (ii) new methods to identify active microbial populations and to isolate previously uncultured microorganisms, and (iii) the development of high-throughput autofluorescence bioreporter assays
Resumo:
The properties of CD8 T-cells requiredfor protection from infectiousdisease and cancer are only partiallycharacterized, and only limited data isavailable regarding T-cell clonotypes.It has been proposed that dominantT-cell clonotypes may have higherprotective potential than their nondominantcounterparts. Our objectiveswere to assess memory andeffector functions, stage of differentiationand clonotype selection of tumor-reactive T lymphocytes followingpeptide vaccination in melanomapatients.We also characterized dominantversus non-dominant clonotypesto further understand the in vivo functionof these T-cells based on theirprevalence. Using a novel single-cellapproach for simultaneous ex vivomolecular and functional analysis, wereport the preferential selection andexpansion of several tumor-specificco-dominant clonotypes of intermediateto high frequencies, irrespectiveof whether native or analog peptidewas used for vaccination. Theseclonotypes made up 40 - 95% of thedifferentiated "effector-like" T-cells,but only 25% of the less-differentiated"effector-memory" cells. Bothsubsets also contained non-dominantT-cell clonotypes, but these were significantlymore frequent in the lessdifferentiatedcells. Thus, cell differentiationwas clonotype-dependent.Surprisingly however, the acquisitionof memory and effector T-cell propertieswas clonotype independent, as wefound similar functional profiles indominant and low/ non-dominantT-cell clonotypes. In contrast to analogpeptide vaccination, native peptidevaccination induced T-cell functionsthat were more comprehensive,with more pronounced effector functionscombined with memory cellproperties. In summary, this study revealsthat T-cell functions are determinedprimarily by the antigen andthe stage of T-cell differentiation, butare similar in dominant and non-dominantclonotypes participating in aCD8 T-cell response. The identifiedclonotypic basis of T-cell responsescontributes to the rational developmentof vaccines.
Resumo:
Dendritic cells (DC) are important cells at the interface between innate and adaptive immunity. DC have a key role in antigen processing and presentation to T cells. Effector functions of DC related to innate immunity have not been explored extensively. We show that bovine monocyte-derived DC (mDC) express inducible nitric oxide synthase (iNOS) mRNA and protein and produce NO upon triggering with interferon-gamma (IFN-gamma) and heat-killed Listeria monocytogenes (HKLM). An immunocytochemical analysis revealed that a sizeable subset (20-60%) copiously expresses iNOS (iNOShi) upon IFN-gamma/HKLM triggering, whereas the other subset expressed low levels of iNOS (iNOSlo). Monocyte-derived macrophages (mMphi) are more homogeneous with regard to iNOS expression. The number of cells within the iNOSlo mDC subset is considerably larger than the number of dead cells or cells unresponsive to IFN-gamma/HKLM. The large majority of cells translocated p65 to the nucleus upon triggering by IFN-gamma/HKLM. A contamination of mDC with iNOS-expressing mMphi was excluded as follows. (i) Cell surface marker analysis suggested that mDC were relatively homogeneous, and no evidence for a contaminating subset expressing macrophage markers (e.g. high levels of CD14) was obtained. (ii) iNOS expression was stronger in iNOShi mDC than in mMphi. The use of maturation-promoting stimuli revealed only subtle phenotypic differences between immature and mature DC in cattle. Nevertheless, these stimuli promoted development of considerably fewer iNOShi mDC upon triggering with IFN-gamma/HKLM. Immunocytochemical results showed that although a significant proportion of cells expressed iNOS only or TNF only upon triggering with IFN-gamma/HKLM, a significant number of cells expressed both iNOS and TNF, suggesting that TNF and iNOS producing (TIP) DC are present within bovine mDC populations obtained in vitro.
Resumo:
CD4+ T cells from alpha beta-T-cell receptor transgenic mice were analyzed for coexpression of cytokine mRNAs during phenotype development using a double-label in situ hybridization technique. T cells that produced cytokines in the primary response were a fraction of the activated population, and only a minority of the cytokine-positive cells coexpressed two cytokines. In secondary responses, frequencies of double-positive cells increased, although they remained a minority of the total. Of the cytokine pairs examined, interleukin (IL)-4 and IL-5 were the most frequently coexpressed. IL-4 and interferon gamma showed the greatest tendency toward segregation of expression, being rarely coexpressed after the primary stimulation. These data indicate that there is significant heterogeneity of cytokine gene expression by individual CD4+ T cells during early antigenic responses. Coexpression of any pairs of cytokines, much less Th1 and Th2 cytokines, is generally the exception. The Th0 phenotype is a population phenotype rather than an individual cell phenotype.
Resumo:
Cell population heterogeneity has attracted great interest for understanding the individual cellular performances in their response to external stimuli and in the production of targeted products. Physical characterization of single cells and analysis of dynamic gene expression, synthesized proteins, and cellular metabolites from one single cell are reviewed. Advanced techniques have been developed to achieve high-throughput and ultrahigh resolution or sensitivity. Single cell capture methods are discussed as well. How to make use of cellular heterogeneities for maximizing cellular productivity is still in the infant stage, and control strategies will be formulated after the causes for heterogeneity have been elucidated.
Resumo:
Single-cell analysis is essential for understanding the processes of cell differentiation and metabolic specialisation in rare cell types. The amount of single proteins in single cells can be as low as one copy per cell and is for most proteins in the attomole range or below; usually considered as insufficient for proteomic analysis. The development of modern mass spectrometers possessing increased sensitivity and mass accuracy in combination with nano-LC-MS/MS now enables the analysis of single-cell contents. In Arabidopsis thaliana, we have successfully identified nine unique proteins in a single-cell sample and 56 proteins from a pool of 15 single-cell samples from glucosinolate-rich S-cells by nanoLC-MS/MS proteomic analysis, thus establishing the proof-of-concept for true single-cell proteomic analysis. Dehydrin (ERD14_ARATH), two myrosinases (BGL37_ARATH and BGL38_ARATH), annexin (ANXD1_ARATH), vegetative storage proteins (VSP1_ARATH and VSP2_ARATH) and four proteins belonging to the S-adenosyl-l-methionine cycle (METE_ARATH, SAHH1_ARATH, METK4_ARATH and METK1/3_ARATH) with associated adenosine kinase (ADK1_ARATH), were amongst the proteins identified in these single-S-cell samples. Comparison of the functional groups of proteins identified in S-cells with epidermal/cortical cells and whole tissue provided a unique insight into the metabolism of S-cells. We conclude that S-cells are metabolically active and contain the machinery for de novo biosynthesis of methionine, a precursor for the most abundant glucosinolate glucoraphanine in these cells. Moreover, since abundant TGG2 and TGG1 peptides were consistently found in single-S-cell samples, previously shown to have high amounts of glucosinolates, we suggest that both myrosinases and glucosinolates can be localised in the same cells, but in separate subcellular compartments. The complex membrane structure of S-cells was reflected by the presence of a number of proteins involved in membrane maintenance and cellular organisation.
Resumo:
Primary hyperparathyroidism (PHPT) is a common endocrine neoplastic disorder caused by a failure of calcium sensing secondary to tumour development in one or more of the parathyroid glands. Parathyroid adenomas are comprised of distinct cellular subpopulations of variable clonal status that exhibit differing degrees of calcium responsiveness. To gain a clearer understanding of the relationship among cellular identity, tumour composition and clinical biochemistry in PHPT, we developed a novel single cell platform for quantitative evaluation of calcium sensing behaviour in freshly resected human parathyroid tumour cells. Live-cell intracellular calcium flux was visualized through Fluo-4-AM epifluorescence, followed by in situ immunofluorescence detection of the calcium sensing receptor (CASR), a central component in the extracellular calcium signalling pathway. The reactivity of individual parathyroid tumour cells to extracellular calcium stimulus was highly variable, with discrete kinetic response patterns observed both between and among parathyroid tumour samples. CASR abundance was not an obligate determinant of calcium responsiveness. Calcium EC50 values from a series of parathyroid adenomas revealed that the tumours segregated into two distinct categories. One group manifested a mean EC50 of 2.40 mM (95% CI: 2.37-2.41), closely aligned to the established normal range. The second group was less responsive to calcium stimulus, with a mean EC50 of 3.61 mM (95% CI: 3.45-3.95). This binary distribution indicates the existence of a previously unappreciated biochemical sub-classification of PHPT tumours, possibly reflecting distinct etiological mechanisms. Recognition of quantitative differences in calcium sensing could have important implications for the clinical management of PHPT.
Resumo:
Genetically engineered organisms expressing spectroscopically active reporter molecules in response to chemical effectors display great potential as living transducers in sensing applications. Green fluorescent protein (gfp gene) bioreporters have distinct advantages over luminescent couterparts (lux gene), including applicability at the single-cell level, but are typically less sensitive. Here we describe a gfp-bearing bioreporter that is sensitive to naphthalene (a poorly water soluble pollutant behaving like a large class of hydrophobic compounds), is suitable for use in chemical assays and bioavailability studies, and has detection limits comparable to lux-bearing bioreporters for higher efficiency detection strategies. Simultaneously, we find that the exploitation of population response data from single-cell analysis is not an algorithmic conduit to enhanced signal detection and hence lower effector detection limits, as normally assumed. The assay reported functions to equal effect with or without biocide.
Dynamic single cell measurements of kinase activity by synthetic kinase activity relocation sensors.
Resumo:
BACKGROUND: Mitogen activated protein kinases (MAPK) play an essential role in integrating extra-cellular signals and intra-cellular cues to allow cells to grow, adapt to stresses, or undergo apoptosis. Budding yeast serves as a powerful system to understand the fundamental regulatory mechanisms that allow these pathways to combine multiple signals and deliver an appropriate response. To fully comprehend the variability and dynamics of these signaling cascades, dynamic and quantitative single cell measurements are required. Microscopy is an ideal technique to obtain these data; however, novel assays have to be developed to measure the activity of these cascades. RESULTS: We have generated fluorescent biosensors that allow the real-time measurement of kinase activity at the single cell level. Here, synthetic MAPK substrates were engineered to undergo nuclear-to-cytoplasmic relocation upon phosphorylation of a nuclear localization sequence. Combination of fluorescence microscopy and automated image analysis allows the quantification of the dynamics of kinase activity in hundreds of single cells. A large heterogeneity in the dynamics of MAPK activity between individual cells was measured. The variability in the mating pathway can be accounted for by differences in cell cycle stage, while, in the cell wall integrity pathway, the response to cell wall stress is independent of cell cycle stage. CONCLUSIONS: These synthetic kinase activity relocation sensors allow the quantification of kinase activity in live single cells. The modularity of the architecture of these reporters will allow their application in many other signaling cascades. These measurements will allow to uncover new dynamic behaviour that previously could not be observed in population level measurements.
Resumo:
High-content analysis has revolutionized cancer drug discovery by identifying substances that alter the phenotype of a cell, which prevents tumor growth and metastasis. The high-resolution biofluorescence images from assays allow precise quantitative measures enabling the distinction of small molecules of a host cell from a tumor. In this work, we are particularly interested in the application of deep neural networks (DNNs), a cutting-edge machine learning method, to the classification of compounds in chemical mechanisms of action (MOAs). Compound classification has been performed using image-based profiling methods sometimes combined with feature reduction methods such as principal component analysis or factor analysis. In this article, we map the input features of each cell to a particular MOA class without using any treatment-level profiles or feature reduction methods. To the best of our knowledge, this is the first application of DNN in this domain, leveraging single-cell information. Furthermore, we use deep transfer learning (DTL) to alleviate the intensive and computational demanding effort of searching the huge parameter's space of a DNN. Results show that using this approach, we obtain a 30% speedup and a 2% accuracy improvement.
Resumo:
To directly assess the binding of exogenous peptides to cell surface-associated MHC class I molecules at the single cell level, we examined the possibility of combining the use of biotinylated peptide derivatives with an immunofluorescence detection system based on flow cytometry. Various biotinylated derivatives of the adenovirus 5 early region 1A peptide 234-243, an antigenic peptide recognized by CTL in the context of H-2Db, were first screened in functional assays for their ability to bind efficiently to Db molecules on living cells. Suitable peptide derivatives were then tested for their ability to generate positive fluorescence signals upon addition of phycoerythrin-labeled streptavidin to peptide derivative-bearing cells. Strong fluorescent staining of Db-expressing cells was achieved after incubation with a peptide derivative containing a biotin group at the C-terminus. Competition experiments using the unmodified parental peptide as well as unrelated peptides known to bind to Kd, Kb, or Db, respectively, established that binding of the biotinylated peptide to living cells was Db-specific. By using Con A blasts derived from different H-2 congenic mouse strains, it could be shown that the biotinylated peptide bound only to Db among > 20 class I alleles tested. Moreover, binding of the biotinylated peptide to cells expressing the Dbm13 and Dbm14 mutant molecules was drastically reduced compared to Db. Binding of the biotinylated peptide to freshly isolated Db+ cells was readily detectable, allowing direct assessment of the relative amount of peptide bound to distinct lymphocyte subpopulations by three-color flow cytometry. While minor differences between peripheral T and B cells could be documented, thymocytes were found to differ widely in their peptide binding activity. In all cases, these differences correlated positively with the differential expression of Db at the cell surface. Finally, kinetic studies at different temperatures strongly suggested that the biotinylated peptide first associated with Db molecules available constitutively at the cell surface and then with newly arrived Db molecules.
Resumo:
To detect expression of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) in oocytes, and their receptor type 2 receptor for BMPs (BMPR2) in cumulus cells in women with polycystic ovary syndrome (PCOS) undergoing in vitro fertilization (IVF), and determine if BMPR2, BMP15, and GDF9 expression correlate with hyperandrogenism in FF of PCOS patients. Prospective case-control study. Eighteen MII-oocytes and their respective cumulus cells were obtained from 18 patients with PCOS, and 48 MII-oocytes and cumulus cells (CCs) from 35 controls, both subjected to controlled ovarian hyperstimulation (COH), and follicular fluid (FF) was collected from small (10-14 mm) and large (> 18 mm) follicles. RNeasy Micro Kit (Qiagen(A (R))) was used for RNA extraction and gene expression was quantified in each oocyte individually and in microdissected cumulus cells from cumulus-oocyte complexes retrieved from preovulatory follicles using qRT-PCR. Chemiluminescence and RIA assays were used for hormone assays. BMP15 and GDF9 expression per oocyte was higher among women with PCOS than the control group. A positive correlation was found between BMPR2 transcripts and hyperandrogenism in FF of PCOS patients. Progesterone values in FF were lower in the PCOS group. We inferred that BMP15 and GDF9 transcript levels increase in mature PCOS oocytes after COH, and might inhibit the progesterone secretion by follicular cells in PCOS follicles, preventing premature luteinization in cumulus cells. BMPR2 expression in PCOS cumulus cells might be regulated by androgens.
Resumo:
Many biological processes depend on the sequential assembly of protein complexes. However, studying the kinetics of such processes by direct methods is often not feasible. As an important class of such protein complexes, pore-forming toxins start their journey as soluble monomeric proteins, and oligomerize into transmembrane complexes to eventually form pores in the target cell membrane. Here, we monitored pore formation kinetics for the well-characterized bacterial pore-forming toxin aerolysin in single cells in real time to determine the lag times leading to the formation of the first functional pores per cell. Probabilistic modeling of these lag times revealed that one slow and seven equally fast rate-limiting reactions best explain the overall pore formation kinetics. The model predicted that monomer activation is the rate-limiting step for the entire pore formation process. We hypothesized that this could be through release of a propeptide and indeed found that peptide removal abolished these steps. This study illustrates how stochasticity in the kinetics of a complex process can be exploited to identify rate-limiting mechanisms underlying multistep biomolecular assembly pathways.