993 resultados para Single Strap Joint


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nel presente lavoro sono esposti i comportamenti e le caratteristiche principali dei giunti incollati. Il metodo agli elementi finiti è stato studiato in modo da realizzare un modello accurato di un sistema fisico. L’analisi agli elementi finiti è stata utilizzata per effettuare una simulazione numerica di un single-strap joint in alluminio e in CFRP sotto un carico di trazione assiale. L’effetto di una modifica della distanza tra le lastre è stato studiato e i risultati confrontati.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work addresses both experimental and numerical analyses regarding the tensile behaviour of CFRP single-strap repairs. Two fundamental geometrical parameters were studied: overlap length and patch thickness. The numerical model used ABAQUS® software and a developed cohesive mixed-mode damage model adequate for ductile adhesives, and implemented within interface finite elements. Stress analyses and strength predictions were carried out. Experimental and numerical comparisons were performed on failure modes, failure load and equivalent stiffness of the repair. Good correlation was found between experimental and numerical results, showing that the proposed model can be successfully applied to bonded joints or repairs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esposizione di comportamenti e caratteristiche principali dei giunti incollati. Il metodo agli elementi finiti è stato studiato in modo da realizzare un modello accurato di un sistema fisico. L’analisi agli elementi finiti è stata utilizzata per effettuare una simulazione numerica di un double-strap joint in alluminio e in CFRP sotto un carico di trazione assiale. L’effetto di una modifica della distanza tra le lastre è stato studiato e i risultati confrontati.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, an experimental study was performed on the influence of plug filling, loading rate and temperature on the tensile strength of single-strap (SS) and double-strap (DS) repairs on aluminium structures. The experimental programme includes repairs with different values of overlap length (LO=10, 20 and 30 mm), and with and without plug filling. The influence of the testing speed on the repairs strength is also addressed (considering 0.5, 5 and 25 mm/min). Accounting for the temperature effects, tests were carried out at room temperature, 50ºC and 80ºC. This will permit a comparative evaluation of the adhesive tested below and above the Glass Transition Temperature (Tg), established by the manufacturer at 67ºC. The global tendencies of the test results concerning the plug filling and overlap length analyses are interpreted from the fracture modes and typical stress distributions for bonded repairs. According to the results obtained from this work, design guidelines for repairing aluminium structures were recommended.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, an experimental study was performed on the influence of plug-filling, loading rate and temperature on the tensile strength of single-strap (SS) and double-strap (DS) repairs on aluminium structures. Whilst the main purpose of this work was to evaluate the feasibility of plug-filling for the strength improvement of these repairs, a parallel study was carried out to assess the sensitivity of the adhesive to external features that can affect the repairs performance, such as the rate of loading and environmental temperature. The experimental programme included repairs with different values of overlap length (L O = 10, 20 and 30 mm), and with and without plug-filling, whose results were interpreted in light of experimental evidence of the fracture modes and typical stress distributions for bonded repairs. The influence of the testing speed on the repairs strength was also addressed (considering 0.5, 5 and 25 mm/min). Accounting for the temperature effects, tests were carried out at room temperature (≈23°C), 50 and 80°C. This permitted a comparative evaluation of the adhesive tested below and above the glass transition temperature (T g), established by the manufacturer as 67°C. The combined influence of these two parameters on the repairs strength was also analysed. According to the results obtained from this work, design guidelines for repairing aluminium structures were

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, an experimental investigation into the shear strength behaviour of aluminium alloy single-lap adhesive joints was carried out in order to understand the effect of temperature on the strength of adhesively bonding joints. Single lap joints (SLJs) were fabricated and tested at RT and high temperatures (100ºC, 125ºC, 150ºC, 175ºC and 200ºC). Results showed that the failure loads of the single-lap joint test specimens vary with temperature and this needs to be considered in any design procedure. It is shown that, although the tensile stress decreased with temperature, the lap-shear strength of the adhesive increased with increasing of temperature up to the glass transition of the adhesive (Tg) and decreased for tests above the Tg.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Adhesively-bonded techniques offer an attractive option for repair of aluminium structures, and currently there are three widely used configurations, i.e., single-strap (SS), double-strap (DS) and scarf repairs. SS and DS repairs are straightforward to execute but stresses in the adhesive layer peak at the ends of the overlap. DS repairs additionally require both sides of the damaged structures to be reachable for repair, which is often not possible. In these repair configurations, some limitations emerge such as the weight, aerodynamic performance and aesthetics. The scarf repair is more complex to fabricate but stresses are more uniform along the adhesive bondline. Few studies of SS and DS repairs with embedded patches, such that these are completely flush with the adherends, are available in the literature. Furthermore, no data is available about the effects of geometrical and material parameters (e.g. the Young’s modulus of adhesive, E) on the mechanical behaviour optimization of embedded repairs. For this purpose, in this work standard SS and DD repairs, and also with embedded patches in the adherends, were tested under tension to allow the geometry optimization, by varying the overlap length (LO), thus allowing the maximization of the repairs strength. The influence of the patch embedding technique, showing notorious advantages such as aerodynamic or aesthetics, was compared in strength with standard strap repairs, for the viability analysis of its implementation. As a result of this work, some conclusions were drawn for the design optimization of bonded repairs on aluminium structures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bonded unions are gaining importance in many fields of manufacturing owing to a significant number of advantages to the traditional fastening, riveting, bolting and welding techniques. Between the available bonding configurations, the single-lap joint is the most commonly used and studied by the scientific community due to its simplicity, although it endures significant bending due to the non-collinear load path, which negatively affects its load bearing capabilities. The use of material or geometric changes in single-lap joints is widely documented in the literature to reduce this handicap, acting by reduction of peel and shear peak stresses at the damage initiation sites in structures or alterations of the failure mechanism emerging from local modifications. In this work, the effect of hole drilling at the overlap on the strength of single-lap joints was analyzed experimentally with two main purposes: (1) to check whether or not the anchorage effect of the adhesive within the holes is more preponderant than the stress concentrations near the holes, arising from the sharp edges, and modification of the joints straining behaviour (strength improvement or reduction, respectively) and (2) picturing a real scenario on which the components to be bonded are modified by some external factor (e.g. retrofitting of decaying/old-fashioned fastened unions). Tests were made with two adhesives (a brittle and a ductile one) varying the adherend thickness and the number, layout and diameter of the holes. Experimental testing showed that the joints strength never increases from the un-modified condition, showing a varying degree of weakening, depending on the selected adhesive and hole drilling configuration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The most common techniques for stress analysis/strength prediction of adhesive joints involve analytical or numerical methods such as the Finite Element Method (FEM). However, the Boundary Element Method (BEM) is an alternative numerical technique that has been successfully applied for the solution of a wide variety of engineering problems. This work evaluates the applicability of the boundary elem ent code BEASY as a design tool to analyze adhesive joints. The linearity of peak shear and peel stresses with the applied displacement is studied and compared between BEASY and the analytical model of Frostig et al., considering a bonded single-lap joint under tensile loading. The BEM results are also compared with FEM in terms of stress distributions. To evaluate the mesh convergence of BEASY, the influence of the mesh refinement on peak shear and peel stress distributions is assessed. Joint stress predictions are carried out numerically in BEASY and ABAQUS®, and analytically by the models of Volkersen, Goland, and Reissner and Frostig et al. The failure loads for each model are compared with experimental results. The preparation, processing, and mesh creation times are compared for all models. BEASY results presented a good agreement with the conventional methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Adhesively bonded repairs offer an attractive option for repair of aluminium structures, compared to more traditional methods such as fastening or welding. The single-strap (SS) and double-strap (DS) repairs are very straightforward to execute but stresses in the adhesive layer peak at the overlap ends. The DS repair requires both sides of the damaged structures to be reachable for repair, which is often not possible. In strap repairs, with the patches bonded at the outer surfaces, some limitations emerge such as the weight, aerodynamics and aesthetics. To minimize these effects, SS and DS repairs with embedded patches were evaluated in this work, such that the patches are flush with the adherends. For this purpose, in this work standard SS and DS repairs, and also with the patches embedded in the adherends, were tested under tension to allow the optimization of some repair variables such as the overlap length (LO) and type of adhesive, thus allowing the maximization of the repair strength. The effect of embedding the patch/patches on the fracture modes and failure loads was compared with finite elements (FE) analysis. The FE analysis was performed in ABAQUS® and cohesive zone modelling was used for the simulation of damage onset and growth in the adhesive layer. The comparison with the test data revealed an accurate prediction for all kinds of joints and provided some principles regarding this technique.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The single-lap joint is the most commonly used, although it endures significant bending due to the non-collinear load path, which negatively affects its load bearing capabilities. The use of material or geometric changes is widely documented in the literature to reduce this handicap, acting by reduction of peel and shear peak stresses or alterations of the failure mechanism emerging from local modifications. In this work, the effect of using different thickness adherends on the tensile strength of single-lap joints, bonded with a ductile and brittle adhesive, was numerically and experimentally evaluated. The joints were tested under tension for different combinations of adherend thickness. The effect of the adherends thickness mismatch on the stress distributions was also investigated by Finite Elements (FE), which explained the experimental results and the strength prediction of the joints. The numerical study was made by FE and Cohesive Zone Modelling (CZM), which allowed characterizing the entire fracture process. For this purpose, a FE analysis was performed in ABAQUS® considering geometric non-linearities. In the end, a detailed comparative evaluation of unbalanced joints, commonly used in engineering applications, is presented to give an understanding on how modifications in the bonded structures thickness can influence the joint performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bonded joints are gaining importance in many fields of manufacturing owing to a significant number of advantages to the traditional methods. The single lap joint (SLJ) is the most commonly used method. The use of material or geometric changes in SLJ reduces peel and shear peak stresses at the damage initiation sites. In this work, the effect of adherend recessing at the overlap edges on the tensile strength of SLJ, bonded with a brittle adhesive, was experimentally and numerically studied. The recess dimensions (length and depth) were optimized for different values of overlap length (LO), thus allowing the maximization of the joint’s strength by the reduction of peak stresses at the overlap edges. The effect of recessing was also investigated by a finite element (FE) analysis and cohesive zone modelling (CZM), which allowed characterizing the entire fracture process and provided joint strength predictions. For this purpose, a static FE analysis was performed in ABAQUS1 considering geometric nonlinearities. In the end, the experimental and FE results revealed the accuracy of the FE analysis in predicting the strength and also provided some design principles for the strength improvement of SLJ using a relatively simple and straightforward technique.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Adhesively bonded techniques are an attractive option to repair aluminium structures, compared to more traditional methods. Actually, as a result of the improvement in the mechanical characteristics of adhesives, adhesive bonding has progressively replaced the traditional joining methods. There are several bonded repair configurations, as single-strap, double-strap and scarf. Compared with strap repairs, scarf repairs have the advantages of a higher efficiency and the absence of aerodynamic disturbance. The higher efficiency is caused by the elimination of the significant joint eccentricities of strap repairs. Moreover, stress distributions along the bond length are more uniform, due to tapering of the scarf edges. The main disadvantages of this technique are the difficult machining of the surfaces, associated costs and requirement of specialised labour. This work reports on an experimental and numerical study of the tensile behaviour of two-dimensional (2D) scarf repairs of aluminium structures bonded with the ductile epoxy adhesive Araldite® 2015. The numerical analysis, by Finite Elements (FE), was performed in Abaqus® and used cohesive zone models (CZM) for the simulation of damage onset and growth in the adhesive layer, thus enabling the strength prediction of the repairs. A parametric study was performed on the scarf angle (α) and different configurations of external reinforcement (applied on one or two sides of the repair, and also different reinforcement lengths). The obtained results allowed the establishment of design guidelines for repairing, showing that the use of external reinforcements enables increasing α for equal strength recovery, which makes the repair procedure easier. The numerical technique was accurate in predicting the repairs’ strength, enabling its use for design and optimisation purposes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the need to find an alternative way to mechanical and welding joints, and at the same time to overcome some limitations linked to these traditional techniques, adhesive bonds can be used. Adhesive bonding is a permanent joining process that uses an adhesive to bond the components of a structure. Composite materials reinforced with fibres are becoming increasingly popular in many applications as a result of a number of competitive advantages. In the manufacture of composite structures, although the fabrication techniques reduce to the minimum by means of advanced manufacturing techniques, the use of connections is still required due to the typical size limitations and design, technological and logistical aspects. Moreover, it is known that in many high performance structures, unions between composite materials with other light metals such as aluminium are required, for purposes of structural optimization. This work deals with the experimental and numerical study of single lap joints (SLJ), bonded with a brittle (Nagase Chemtex Denatite XNRH6823) and a ductile adhesive (Nagase Chemtex Denatite XNR6852). These are applied to hybrid joints between aluminium (AL6082-T651) and carbon fibre reinforced plastic (CFRP; Texipreg HS 160 RM) adherends in joints with different overlap lengths (LO) under a tensile loading. The Finite Element (FE) Method is used to perform detailed stress and damage analyses allowing to explain the joints’ behaviour and the use of cohesive zone models (CZM) enables predicting the joint strength and creating a simple and rapid design methodology. The use of numerical methods to simulate the behaviour of the joints can lead to savings of time and resources by optimizing the geometry and material parameters of the joints. The joints’ strength and failure modes were highly dependent on the adhesive, and this behaviour was successfully modelled numerically. Using a brittle adhesive resulted in a negligible maximum load (Pm) improvement with LO. The joints bonded with the ductile adhesive showed a nearly linear improvement of Pm with LO.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As estruturas coladas são geralmente projetadas para que o adesivo seja essencialmente sujeito a esforços de corte, pois neste tipo de solicitação o adesivo apresenta melhores caraterísticas mecânicas. A avaliação do comportamento ao corte pode ser realizada com o adesivo no estado maciço ou como camada fina em juntas adesivas. Os métodos que permitem avaliar o comportamento ao corte, quer para o adesivo, quer para as juntas, são: o ensaio Iosipescu ou V-Notched beam shear method, o ensaio de borboleta ou Notched plate shear method (Arcan), o ensaio de torsão, o ensaio de tração numa junta de sobreposição simples e o ensaio Thick Adherend Shear Test (TAST). Os ensaios Arcan e Iosipescu, tal como o ensaio de torção, podem ser realizados em provetes de adesivo maciço ou em juntas. O ensaio de torção é pouco utilizado, porque a aplicação do esforço de corte exige dispositivos e equipamentos de ensaios complexos. Os ensaios Arcan e Iosipescu utilizam provetes com entalhes e podem introduzir alguma dificuldade na medição precisa das deformações. O ensaio de tração numa junta de sobreposição simples é um dos métodos mais usados para caraterizar uma junta adesiva, porque é um método simples, as juntas são de fácil fabrico e pode ser realizado em máquinas universais de ensaios mecânicos. Neste ensaio os aderentes estão sujeitos a uma solicitação de tração, enquanto a camada de adesivo está sujeita a esforços de corte combinados com esforços de arrancamento. Os esforços de arrancamento resultam da própria geometria da junta na qual existe um desalinhamento das forças de tração, mesmo quando são colocados calços (reguladores de espessura) nos locais de amarração. O ensaio TAST é dos mais populares para obtenção das propriedades ao corte, uma vez que tanto as ferramentas de ensaio como o fabrico dos provetes são relativamente simples. Este ensaio é realizado em junta sendo os substratos espessos e de aço que, devido à sua elevada rigidez, contribuem para um esforço de corte praticamente puro no adesivo. Neste trabalho realizou-se o projeto e a fabricação das ferramentas, gabarit e substratos necessários para a execução de provetes TAST e ensaios utilizando diferentes adesivos.