918 resultados para Shetland Islands
Resumo:
New structural data from Elephant Island and adjacent islands are presented with the objective to improve the understanding of subduction kinematics in the area northeast of the Antarctic Peninsula. on the island, a first deformation phase, D-1, produced a strong SL fabric with steep stretching and mineral lineations, partly defined by relatively high pressure minerals, such as crossite and glaucophane. D-1 is interpreted to record southward subduction along an E-W trench with respect to the present position of the island. A second phase, D-2, led to intense folding with steep E-W-trending axial surfaces. The local presence of sinistral C'-type sheer bands related to this phase and the oblique inclination of the L-2 stretching lineations are the main arguments to interpret this phase as representing oblique sinistral transpressive shear along steep, approximately E-W-trending shear zones, with the northern (Pacific) block going down with respect to the southern (Antarctic Peninsula) block. The sinistral strike-slip component may represent a trench-linked strike-slip movement as a consequence of oblique subduction. Lithostatic pressure decreased and temperature increased to peak values during D-2, interpreted to represent the collision of thickened oceanic crust with the active continental margin. The last deformation phase, D-3, is characterised by post-metamorphic kink bands, partially forming conjugate sets consistent with E-W shortening and N-S extension. The rock units that underlie the island probably rotated during D-3, in Cenozoic times, together with the trench, from an NE-SW to the present ENE-WSW position, during the progressive opening of the Scotia Sea. The similarity between the strain orientation of D-3 and that of the sinistral NE-SW Shackleton Fracture Zone is consistent with this interpretation. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
A subduction complex composed of ocean floor material mixed with arc-derived metasediments crops out in the Elephant Island group and at Smith Island, South Shetland Islands, Antarctica, with metamorphic ages of 120-80 Ma and 58-47 Ma? respectively. Seven metamorphic zones (I-VII) mapped on Elephant Island delineate a gradual increase in metamorphic grade from the pumpellyite-actinolite facies, through the crossite-epidote blueschist facies, to the lower amphibolite facies. Geothermometry in garnet-amphibole and garnet-biotite pairs yields temperatures of about 350 degrees C in zone III to about 525 degrees C in zone VII. Pressures were estimated on the basis of Si content in white mica, Al2O3 content in alkali amphibole, Na-M4/Al-IV in sodic-calcic and calcic amphibole, Al-VI/Si in calcic amphibole, and jadeite content in clinopyroxene. Mean values vary from about 6-7.5 kbar in zone II to about 5 kbar in zone VII. Results from the other islands of the Elephant Island group are comparable to those from the main island; Smith Island yielded slightly higher pressures, up to 8 kbar, with temperatures estimated between 300 and 350 degrees C. Zoned minerals and other textural indications locally enable inference of P-T-t trajectories, all with a clockwise evolution. A reconstruction in space and time of these P-T-t paths allows an estimate of the thermal structure in the upper crust during the two ductile deformation phases (D-1 & D-2) that affected the area. This thermal structure is in good agreement with the one expected for a subduction zone. The arrival and collision of thickened oceanic crust may have caused the accretion and preservation of the subduction complex. In this model, D-1 represents the subduction movements expressed by the first vector of the clockwise P-T-t path, D-2 reflects the collision corresponding to the second vector with increasing temperature and decreasing pressure, and D-3 corresponds to isostatic uplift accompanied by erosion, under circumstances of decreasing temperature and pressure.
Resumo:
The hunting behavior of leopard seals Hydrurga leptonyx was monitored opportunistically at Seal Island, South Shetland Islands, during the austral summers from 1986/87 to 1994/95. Leopard seals used several methods to catch Antarctic fur seal pups Arctocephalus gazella and chinstrap penguins Pygoscelis antarctica, and individuals showed different hunting styles and hunting success. One to two leopard seals per year were responsible for an average of 60% of observed captures of fur seal pups. Leopard seals preyed on penguins throughout the summer, but preyed on fur seal pups only between late December and mid-February. Hunting behavior differed significantly between different locations on the island; fur seals were hunted only at one colony, and penguins were hunted in several areas. The relative abundance of prey types, size of prey in relation to predator, and specialization of individual leopard seals to hunt fur seal prey probably influence individual prey preferences among leopard seals. On five occasions, two leopard seals were seen together on Seal Island. Possible interpretations of the relationship between the interacting leopard seals included a mother-offspring relationship, a consorting male-female pair, and an adult leopard seal followed by an unrelated juvenile. In two incidents at Seal Island, two leopard seals were observed interacting while hunting: one seal captured fur seal pups and appeared to release them to the other seal. Observations of leopard seals interacting during hunting sessions were difficult to confirm as co-operative hunting, but they strongly implied that the two seals were not agonistic toward one another. The hunting success of individual leopard seals pursuing penguins or fur seals is probably high enough for co-operative hunting not to become a common hunting strategy; however, it may occur infrequently when it increases the hunting productivity of the seals.
Variations in Ice Rafted Detritus on Beaches in the South Shetland Islands: A Possible Climate Proxy
Resumo:
Raised beach ridges on Livingston Island of the South Shetland Islands display variations in both quantity and source of ice rafted detritus (IRD) received over time. Whereas the modem beach exhibits little IRD, all of which is of local origin, the next highest beach (similar to250 C-14 yr BP) has large amounts, some of which comes from as far away as the Antarctic Peninsula. Significant quantities of IRD also were deposited similar to 1750 C-14 yr BP. Both time periods coincide with generally cooler regional conditions and, at least in the case of the similar to250 yr old beach, local glacial advance. We suggest that the increases in ice rafting may reflect periods of greater glacial activity, altered ocean circulation, and/or greater iceberg preservation during the late Holocene. Limited IRD and lack of far-travelled erratics on the modem beach are both consistent with the ongoing warming trend in the Antarctic Peninsula region.
Resumo:
The climate evolution of the South Shetland Islands during the last c. 2000 years is inferred from the multiproxy analyses of a long (928 cm) sediment core retrieved from Maxwell Bay off King George Island. The vertical sediment flux at the core location is controlled by summer melting processes that cause sediment-laden meltwater plumes to form. These leave a characteristic signature in the sediments of NE Maxwell Bay. We use this signature to distinguish summer and winter-dominated periods. During the Medieval Warm Period, sediments are generally finer which indicates summer-type conditions. In contrast, during the Little Ice Age (LIA) sediments are generally coarser and are indicative of winter-dominated conditions. Comparison with Northern and Southern Hemisphere, Antarctic, and global temperature reconstructions reveals that the mean grain-size curve from Maxwell Bay closely resembles the curve of the global temperature reconstruction. We show that the medieval warming occurred earlier in the Southern than in the Northern Hemisphere, which might indicate that the warming was driven by processes occurring in the south. The beginning of the LIA appears to be almost synchronous in both hemispheres. The warming after the LIA closely resembles the Northern Hemisphere record which might indicate this phase of cooling was driven by processes occurring in the north. Although the recent rapid regional warming is clearly visible, the Maxwell Bay record does not show the dominance of summer-type sediments until the 1970s. Continued warming in this area will likely affect the marine ecosystem through meltwater induced turbidity of the surface waters as well as an extension of the vegetation period due to the predicted decrease of sea ice in this area.
Resumo:
The sedimentary architecture of polar gravel-beach ridges is presented and it is shown that ridge internal geometries reflect past wave-climate conditions. Ground-penetrating radar (GPR) data obtained along the coasts of Potter Peninsula (King George Island) show that beach ridges unconformably overlie the prograding strand plain. Development of individual ridges is seen to result from multiple storms in periods of increased storm-wave impact on the coast. Strand-plain progradation, by contrast, is the result of swash sedimentation at the beach-face under persistent calm conditions. The sedimentary architecture of beach ridges in sheltered parts of the coast is characterized by seaward-dipping prograding beds, being the result of swash deposition under stormy conditions, or aggrading beds formed by wave overtopping. By contrast, ridges exposed to high-energy waves are composed of seaward- as well as landward-dipping strata, bundled by numerous erosional unconformities. These erosional unconformities are the result of sediment starvation or partial reworking of ridge material during exceptional strong storms. The number of individual ridges which are preserved from a given time interval varies along the coast depending on the morphodynamic setting: sheltered coasts are characterized by numerous small ridges, whereas fewer but larger ridges develop on exposed beaches. The frequency of ridge building ranges from decades in the low-energy settings up to 1600 years under high-energy conditions. Beach ridges in the study area cluster at 9.5, 7.5, 5.5, and below 3.5 m above the present-day storm beach. Based on radiocarbon data, this is interpreted to reflect distinct periods of increased storminess and/or shortened annual sea-ice coverage in the area of the South Shetland Islands for the times around 4.3, c. 3.1, 1.9 ka cal BP, and after 0.65 ka cal BP. Ages further indicate that even ridges at higher elevations can be subject to later reactivation and reworking. A careful investigation of the stratigraphic architecture is therefore essential prior to sampling for dating purposes.
Resumo:
SCAR KGIS (SCAR King George Island GIS Project) was an integrated topographic database for King George Island, South Shetland Islands, including the SCAR Feature Catalogue to semantically integrate the data sets. The project, operated by the University of Freiburg, was available at http://portal.uni-freiburg.de/AntSDI as "The Antarctic Spatial Data Infrastructure (AntSDI)". Operation ended in 2007. The remaining data files were archived in shape format (zipped) in projections as recommended by SCAR. The source data was provided by a variety of institutions which were not referenced in the original product.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: A new hydrographical survey of the islands of Shetland : with many improvements and additions, and the sailing directions, by Captn. Thomas Preston. It was printed for Robert Sayer, chartseller No. 63 Fleet Street 1st. Jany., 1788. Scale [ca. 1:419,830].The image inside the map neatline is georeferenced to the surface of the earth and fit to the European Datum 1950, Universal Transverse Mercator (UTM) Zone 30N projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as rocks, channels, points, ports, coves, islands, anchorage points, and more. Includes also selected land features such as towns and villages, drainage, selected buildings, and more. Relief shown by hachures; depths shown by soundings. Includes also profile views, navigational notes, and insets: Directions for Valey Sound -- The Isles of Feroe. This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Geological map of Potter Peninsula (King George Island, South Shetland Islands, Antarctic Peninsula)
Resumo:
We present here a new geological map of Potter Peninsula (King George Island, South Shetland Islands). Like on adjacent Barton Peninsula, the morphology on Potter Peninsula is predominantly characterized by a glacial landscape with abrasion platforms offshore, in parts steep cliffs along the coast, and a rather smooth, hilly countryside in the interior. Potter Peninsula forms part of the downthrown Warszawa Block. The volcanic sequence cropping out here belongs to the King George Island Supergroup, with an observed local minimum thickness of approx. 90 m (Kraus 2005). The most prominent morphological feature is Three Brothers Hill (196 m), a well known andesitic plug showing conspicuous columnar jointing. It marks the final stage of activity of a Paleogene volcano, whose eruption products (lava flows and pyroclastic rocks), together with hypabyssal intrusions related to the volcanism, make up most of the lithology observed on Potter Peninsula (Kraus 2005). The Three Brothers Hill volcanic complex is eroded down to its deepest levels. Thus, the stratigraphically deepest units from the initial phase of volcanic activity are cropping out in some parts (Kraus & del Valle, in Wienke et al. 2008). The lithology on Potter Peninsula comprises lava flows (~50%), pyroclastic rocks (ash-fallout, pyroclastic flow deposits, volcanic breccia and agglomerates, ~30%) and hypabyssal intrusions (dykes, sills and small subvolcanic intrusive bodies, ~20%). 40Ar/39Ar datings carried out on magmatic dykes from Potter Peninsula indicate a short, but intense intrusive event during the Lutetian (Kraus et al. 2007).
Resumo:
The application of custom classification techniques and posterior probability modeling (PPM) using Worldview-2 multispectral imagery to archaeological field survey is presented in this paper. Research is focused on the identification of Neolithic felsite stone tool workshops in the North Mavine region of the Shetland Islands in Northern Scotland. Sample data from known workshops surveyed using differential GPS are used alongside known non-sites to train a linear discriminant analysis (LDA) classifier based on a combination of datasets including Worldview-2 bands, band difference ratios (BDR) and topographical derivatives. Principal components analysis is further used to test and reduce dimensionality caused by redundant datasets. Probability models were generated by LDA using principal components and tested with sites identified through geological field survey. Testing shows the prospective ability of this technique and significance between 0.05 and 0.01, and gain statistics between 0.90 and 0.94, higher than those obtained using maximum likelihood and random forest classifiers. Results suggest that this approach is best suited to relatively homogenous site types, and performs better with correlated data sources. Finally, by combining posterior probability models and least-cost analysis, a survey least-cost efficacy model is generated showing the utility of such approaches to archaeological field survey.
Resumo:
Part II (p. 99-112) deals with the scat, or ancient land-tax levied in the Shetland Islands.
Resumo:
Dissertação de Mestrado, Geomática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
Livingston Island, the second island of South Shetland Island, constains Mesozoic-Cenozoic basement, Mesozoic-Cenozoic volcanic sequences, plutonic intrusions and post-subduction volcanic rocks, which document the history and evolution of an important part of the South Shetland Islands magmatic arc. The sedimentary sequence is named the Miers Bluff Formation (MBF) and is interpreted as turbidite since the first geological study on South Shetland Islands, and is interpreted as turbidite. It base and top are not exposed, but a thickness of more than 3000m has been suggested and seems plausible. The turbidite is overlain by Mid - Cretaceous volcanic rocks and intruded by Eocene tonalites. The age of the Miers Bluff Formation is poorly constrained Late Carboniferous -Early Triassic. Sedimentary Environment, tectonic setting and forming age of sedimentary rocks of the Miers Bluff Formation were discussed by means of the methods of sedimentology, petrography and geochemistry, combinig with the study of trace fossils and microfossil plants. The following conclusions are obstained. A sedimentary geological section of Johnsons Dock is made by outside measuring and watching, and then according the section, the geological map near the Spanish Antarctic station was mapped. Four pebbly mudstone layers are first distinguished, which thickness is about 10m. The pebbly mudstone is the typical rock of debris flow, and the depostional environment of pebbly mudstone may be the channel of mid fan of submarine fan. The sedimentsry structural characteristics and size analysis of sandstones show the typical sedimentary feature of turbidity flow and the Miers Bluff Formation is a deep-water turbidite (include some gravity-flow sediments). The materials of palaeocurrents suggest the continental slope dip to southeast, and indicate the provenance of turbidity sediment in the northwest area. By facies analysis, six main facies which include seven subfacies were recognized, which are formed in mid-fan and lower-fan of submarine, meanwhile, the sedimentary features of each facies and subfacies are summarized. The study of clastic composition, major elements, trace elements and rare earth elements indicates the forming setting of the Miers Bluff Formaton is active continental margin and continental island arc and the provenance is dissected magmatic arc which main composition is felsic gneiss. Many trace fossils of the whole succession were found in the turbidites of the Miers Bluff Formation. All these trace fossils are deep sea ichnofossils. There are fifteen ichnogenus, sixteen ichnospecies. Moreover, a new trace fossil was found and a new ichnogenus and new ichnospecies was proposed - Paleaichnus antarctics ichnogen, et ichnosp, nov.. Except the new ichnogenus and ichnospecies, others had been found in deep-sea flysch turbidites. Some are in mudstone and are preserved in the cast convex of overlying sandstone sole, they formed before turbidity flows occurred and belong to the high-different Graphoglyptida of fiysch mudstone. Others as Fucusopsis and Neonereites are preserved in sandstones and stand for trace assemblages after turbidity sedimentation. These trace fossils are typical members of abyssal "Nereites" ichnofacies, and provide for the depositional environment of the Miers Bluff Formation. Fairly diverse microfossil plants have been recovered from the Miers Bluff Formation, Livingston Island, including spores, pollen, acritarchs, wood fragments and cuticles. Containing a total of about 45 species (forms) of miospores, the palynofiora is quantitatively characterized by the dominance of non-striate bisaccate pollen, but spores of pteridophytes and pollen of gymnosperms are proportionate in diversity. It is somewhat comparable to the subzone C+D of the Alisporites zone of Antarctica, and the upper Craterisporites rotundus zone and the lower Polycingulatisporites crenulatus zone of Australia, suggesting a Late Triassic (possibly Norian-Rhaetian) age, as also evidenced by the sporadic occurrence of Aratrisporites and probable Classopollis as well as the complete absence of bisaccate Striatiti. The parent vegetation and paleoclimate are preliminarily deduced. At last, the paper prooses the provenance of sedimentary rocks of the Miers Bluff Formation locates in the east part to the southern Chile(or Southern South American). In the Triassic period, contrasting with New Zealand, Australia and South American of the Pacific margin of Gondwanaland, the Miers Bluff Formation is deposited in the fore-arc basin or back-arc basin of magmatic arc.
Resumo:
The environmental fate of selected persistent organic pollutants (POPs) in the North Sea system is modelled with a high resolution Fate and Transport Ocean Model (FANTOM) that uses hydrodynamic model output from the Hamburg Shelf Ocean Model (HAMSOM). Large amounts of POPs enter the North Sea from the surrounding highly populated, industrialised and agricultural countries. Major pathways to the North Sea are atmospheric deposition and river inputs, with additional contributions coming from bottom sediments and adjacent seas. The model domain covers the entire North Sea region, extending northward as far as the Shetland Islands, and includes adjacent basins such as the Skagerrak, Kattegat, and the westernmost part of the Baltic Sea. Model resolution (for both models) is 1.5’ latitude x 2.5’ longitude (approximately 3 km horizontal resolution) with 30 vertical levels. The POP model also has 20 sediment layers. Important model processes controlling the fate of POPs in the North Sea system are discussed. Results focus on Lindane gamma- HCH or gamma-hexachlorocyclohexane) and PCB 153.