875 resultados para Sheet-metal work - Simulation methods
Resumo:
Mode of access: Internet.
Resumo:
Includes index.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographies.
Resumo:
Mode of access: Internet.
Resumo:
This investigation is in two parts, theory and experimental verification. (1) Theoretical Study In this study it is, for obvious reasons, necessary to analyse the concept of formability first. For the purpose of the present investigation it is sufficient to define the four aspects of formability as follows: (a) the formability of the material at a critical section, (b) the formability of the material in general, (c) process efficiency, (d) proportional increase in surface area. A method of quantitative assessment is proposed for each of the four aspects of formability. The theoretical study also includes the distinction between coaxial and non-coaxial strains which occur, respectively, in axisymmetrical and unsymmetrical forming processes and the inadequacy of the circular grid system for the assessment of formability is explained in the light of this distinction. (2) Experimental Study As one of the bases of the experimental work, the determination of the end point of a forming process, which sets the limit to the formability of the work material, is discussed. The effects of three process parameters on draw-in are shown graphically. Then the delay of fracture in sheet metal forming resulting from draw-in is analysed in kinematical terms, namely, through the radial displacements, the radial and the circumferential strains, and the projected thickness of the workpiece. Through the equilibrium equation of the membrane stresses, the effect on the shape of the unsupported region of the workpiece, and hence the position of the critical section is explained. Then, the effect of draw-in on the four aspects of formability is discussed throughout this investigation. The triangular coordinate system is used to present and analyse the triaxial strains involved. This coordinate system has the advantage of showing all the three principal strains in a material simultaneously, as well as representing clearly the many types of strains involved in sheet metal work.
Resumo:
The market place of the twenty-first century will demand that manufacturing assumes a crucial role in a new competitive field. Two potential resources in the area of manufacturing are advanced manufacturing technology (AMT) and empowered employees. Surveys in Finland have shown the need to invest in the new AMT in the Finnish sheet metal industry in the 1990's. In this run the focus has been on hard technology and less attention is paid to the utilization of human resources. In manymanufacturing companies an appreciable portion of the profit within reach is wasted due to poor quality of planning and workmanship. The production flow production error distribution of the sheet metal part based constructions is inspectedin this thesis. The objective of the thesis is to analyze the origins of production errors in the production flow of sheet metal based constructions. Also the employee empowerment is investigated in theory and the meaning of the employee empowerment in reducing the overall production error amount is discussed in this thesis. This study is most relevant to the sheet metal part fabricating industrywhich produces sheet metal part based constructions for electronics and telecommunication industry. This study concentrates on the manufacturing function of a company and is based on a field study carried out in five Finnish case factories. In each studied case factory the most delicate work phases for production errors were detected. It can be assumed that most of the production errors are caused in manually operated work phases and in mass production work phases. However, no common theme in collected production error data for production error distribution in the production flow can be found. Most important finding was still that most of the production errors in each case factory studied belong to the 'human activity based errors-category'. This result indicates that most of the problemsin the production flow are related to employees or work organization. Development activities must therefore be focused to the development of employee skills orto the development of work organization. Employee empowerment gives the right tools and methods to achieve this.
Resumo:
Students in the Sheet Metal Department at the New York Trade School are shown working on ductwork in a classroom at the school. Black and white photograph.
Resumo:
A class of sheet metal students are shown working in this black and white photograph.
Resumo:
A view of students at work in a classroom in the Sheet Metal Department at the New York Trade School. Black and white photograph.
Resumo:
This report illustrates a comparative study of various joining methods involved in sheet metal production. In this report it shows the selection of joining methods, which includes comparing the advantages and disadvantages of a method over the other ones and choosing the best method for joining. On the basis of various joining process from references, a table is generated containing set of criterion that helps in evaluation of various sheet metal joining processes and in selecting the most suitable process for a particular product. Three products are selected and a comprehensive study of the joining methods is analyzed with the help of various parameters. The table thus is the main part of the analysis process of this study and can be advanced with the beneficial results. It helps in a better and easy understanding and comparing the various methods, which provides the foundation of this study and analysis. The suitability of the joining method for various types of cases of different sheet metal products can be tested with the help of this table. The sections of the created table display the requirements of manufacturing. The important factor has been considered and given focus in the table, as how the usage of these parameters is important in percentages according to particular or individual case. The analysis of the methods can be extended or altered by changing the parameters according to the constraint. The use of this table is demonstrated by pertaining the cases from sheet metal production.
Resumo:
The goal of this thesis is to give information to machine designers about how to design and size sheet metal structures and joints. Generally, the designing object is to lighten structures. To design structures that are light and can carry loads more effectively, designers have to be updated of new manufacturing techniques and new designing methods and criterions. With knowledge of this thesis, a designer can recognize objects and methods plus how and where it is possible to apply these new more effectively load carrying structures. The thesis gives answers to questions of corrosion and material planning, goes into joint types and manufacturing techniques of sheet metal structures. One of the main issues is to develop designers world of ideas to design right kind of products with new lasertechniques.
Resumo:
In this research work, the results of an investigation dealing with welding of sheet metals with diverse air gap using FastROOT modified short arc welding method and short circuit MAG welding processes have been presented. Welding runs were made under different conditions and, during each run, the different process parameters were continuously monitored. It was found that maximum welding speed and less HAZ are reached under specific welding conditions with FastROOT method with the emphasis on arc stability. Welding results show that modified short arc exhibits a higher electrode melting coefficient and with virtually spatter free droplet transition. By adjusting the short circuit duration the penetration can be controlled with only a small change in electrode deposition. Furthermore, by mixing pulsed MIG welding with modified arc welding the working envelope of the process is greatly extended allowing thicker material sections to be welded with improved weld bead aesthetics. FastROOT is a modified short arc welding process using mechanized or automated welding process based on dip transfer welding, characterized by controlled material deposition during the short circuit of the wire electrode to the workpiece.
Resumo:
Additive manufacturing is a fast growing manufacturing technology capable of producing complex objects without the need for conventional manufacturing process planning. During the process the work piece is built by adding material one layer at a time according to a digital 3D CAD model. At first additive manufacturing was mainly used to make prototypes but the development of the technology has made it possible to also make final products. Welding is the most common joining method for metallic materials. As the maximum part size of additive manufacturing is often limited, it may sometimes be required to join two or more additively manufactured parts together. However there has been almost no research on the welding of additively manufactured parts so far, which means that there has been very little information available on the possible differences compared to the welding of sheet metal parts. The aim of this study was to compare the weld joint properties of additively manufactured parts to those of sheet metal parts. The welding process that was used was TIG welding and the test material was 316L austenitic stainless steel. Weld joint properties were studied by making tensile, bend and hardness tests and by studying the weld microstructures with a microscope. Results show that there are certain characteristics in the welds of additively manufactured parts. The building direction of the test pieces has some impact on the mechanical properties of the weld. Nevertheless all the welds exhibited higher yield strength than the sheet metal welds but at the same time elongation at break was lower. It was concluded that TIG welding is a feasible process for welding additively manufactured parts.