953 resultados para Shape effect
Resumo:
This article shows the research carried out by the authors focused on how the shape of structural reinforced concrete elements treated with electrochemical chloride extraction can affect the efficiency of this process. Assuming the current use of different anode systems, the present study considers the comparison of results between conventional anodes based on Ti-RuO2 wire mesh and a cement-based anodic system such as a paste of graphite-cement. Reinforced concrete elements of a meter length were molded to serve as laboratory specimens, to closely represent authentic structural supports, with circular and rectangular sections. Results confirm almost equal performances for both types of anode systems when electrochemical chloride extraction is applied to isotropic structural elements. In the case of anisotropic ones, such as rectangular sections with no uniformly distributed rebar, differences in electrical flow density were detected during the treatment. Those differences were more extreme for Ti-RuO2 mesh anode system. This particular shape effect is evidenced by obtaining the efficiencies of electrochemical chloride extraction in different points of specimens.
Resumo:
To assess the quality of school education, much of educational research is concerned with comparisons of test scores means or medians. In this paper, we shift this focus and explore test scores data by addressing some often neglected questions. In the case of Brazil, the mean of test scores in Math for students of the fourth grade has declined approximately 0,2 standard deviation in the late 1990s. But what about changes in the distribution of scores? It is unclear whether the decline was caused by deterioration in student performance in upper and/or lower tails of the distribution. To answer this question, we propose the use of the relative distribution method developed by Handcock and Morris (1999). The advantage of this methodology is that it compares two distributions of test scores data through a single distribution and synthesizes all the differences between them. Moreover, it is possible to decompose the total difference between two distributions in a level effect (changes in median) and shape effect (changes in shape of the distribution). We find that the decline of average-test scores is mainly caused by a worsening in the position of all students throughout the distribution of scores and is not only specific to any quantile of distribution.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this work is to investigate, using extensive Monte Carlo computer simulations, composite materials consisting of liquid crystals doped with nanoparticles. These systems are currently of great interest as they offer the possibility of tuning the properties of liquid crystals used in displays and other devices as well as providing a way of obtaining regularly organized systems of nanoparticles exploiting the molecular organization of the liquid crystal medium. Surprisingly enough, there is however a lack of fundamental knowledge on the properties and phase behavior of these hybrid materials, making the route to their application an essentially empirical one. Here we wish to contribute to the much needed rationalization of these systems studying some basic effects induced by different nanoparticles on a liquid crystal host. We investigate in particular the effects of nanoparticle shape, size and polarity as well as of their affinity to the liquid crystal solvent on the stability of the system, monitoring phase transitions, order and molecular organizations. To do this we have proposed a coarse grained approach where nanoparticles are modelled as a suitably shaped (spherical, rod and disk like) collection of spherical Lennard-Jones beads, while the mesogens are represented with Gay-Berne particles. We find that the addition of apolar nanoparticles of different shape typically lowers the nematic–isotropic transition of a non-polar nematic, with the destabilization being greater for spherical nanoparticles. For polar mesogens we have studied the effect of solvent affinity of the nanoparticles showing that aggregation takes places for low solvation values. Interestingly, if the nanoparticles are polar the aggregates contribute to stabilizing the system, compensating the shape effect. We thus find the overall effects on stability to be a delicate balance of often contrasting contributions pointing to the relevance of simulations studies for understanding these complex systems.
Resumo:
Adhesively-bonded joints are extensively used in several fields of engineering. Cohesive Zone Models (CZM) have been used for the strength prediction of adhesive joints, as an add-in to Finite Element (FE) analyses that allows simulation of damage growth, by consideration of energetic principles. A useful feature of CZM is that different shapes can be developed for the cohesive laws, depending on the nature of the material or interface to be simulated, allowing an accurate strength prediction. This work studies the influence of the CZM shape (triangular, exponential or trapezoidal) used to model a thin adhesive layer in single-lap adhesive joints, for an estimation of its influence on the strength prediction under different material conditions. By performing this study, guidelines are provided on the possibility to use a CZM shape that may not be the most suited for a particular adhesive, but that may be more straightforward to use/implement and have less convergence problems (e.g. triangular shaped CZM), thus attaining the solution faster. The overall results showed that joints bonded with ductile adhesives are highly influenced by the CZM shape, and that the trapezoidal shape fits best the experimental data. Moreover, the smaller is the overlap length (LO), the greater is the influence of the CZM shape. On the other hand, the influence of the CZM shape can be neglected when using brittle adhesives, without compromising too much the accuracy of the strength predictions.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Momentary configurations of long polymers at thermal equilibrium usually deviate from spherical symmetry and can be better described, on average, by a prolate ellipsoid. The asphericity and nature of asphericity (or prolateness) that describe these momentary ellipsoidal shapes of a polymer are determined by specific expressions involving the three principal moments of inertia calculated for configurations of the polymer. Earlier theoretical studies and numerical simulations have established that as the length of the polymer increases, the average shape for the statistical ensemble of random configurations asymptotically approaches a characteristic universal shape that depends on the solvent quality. It has been established, however, that these universal shapes differ for linear, circular, and branched chains. We investigate here the effect of knotting on the shape of cyclic polymers modeled as random isosegmental polygons. We observe that random polygons forming different knot types reach asymptotic shapes that are distinct from the ensemble average shape. For the same chain length, more complex knots are, on average, more spherical than less complex knots.
Resumo:
The elastocaloric effect in the vicinity of the martensitic transition of a Cu-Zn-Al single crystal has been studied by inducing the transition by strain or stress measurements. While transition trajectories show significant differences, the entropy change associated with the whole transformation (DeltaSt) is coincident in both kinds of experiments since entropy production is small compared to DeltaSt. The values agree with estimations based on the Clausius-Clapeyron equation. The possibility of using these materials for mechanical refrigeration is also discussed.
Resumo:
The main objective of this thesis was to design a hinge and a closing mechanism for the plastic rim of a paperboard package. Of the hinge and closing mechanisms the 3D-models were designed using SolidWorks program and the functionality of the mechanisms was tested with rapid prototype models. When a mechanism that worked was found, the manufacturability of the mechanisms was tested in an injection molding machine with changeable inserts. Another objective of this thesis was to test the effect of the shape of paperboard package to its manufacturability. The effect of the packages shape was tested with plastic tools made for three different shaped trays. Suggestions for further research were made according to the results of the thesis.
Resumo:
Residues of three pesticides (dimethoate, parathion, and pyrazophos) in two artichoke cultivars, Masedu and Spinoso sardo, were investigated. The amount of pesticides in artichokes was greatly affected by the head shape. In the case of the calix-shaped Masedu artichoke, the residues in whole heads at commercial ripening were on average about twice higher than those of the pagoda-shaped Spinoso sardo artichoke. In the heart this ratio was 4 to 42 times greater. Residue decay rates were very fast, mainly owing to the dilution effect due to head growth.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)