144 resultados para Sedative
Resumo:
Alcohol use disorders (AUDs) are a major public health problem, and the few treatment options available to those seeking treatment offer only modest success rates. There remains a need to identify novel targets for the treatment of AUDs. The neuronal nicotinic acetylcholine receptors (nAChRs) represent a potential therapeutic target in the brain, as recent human genetic studies have implicated gene variants in the α5 nAChR subunit as high risk factors for developing alcohol dependence. Here, we evaluate the role of 5* nAChR for ethanol-mediated behaviors using α5+/+ and α5-/- mice. We characterized the effect of hypnotic doses of ethanol and investigated drinking behavior using an adapted Drinking-in-the Dark (DID) paradigm that has been shown to induce high ethanol consumption in mice. We found the α5 subunit to be critical in mediating the sedative effects of ethanol. The α5-/- mice showed slower recovery from ethanol-induced sleep, as measured by loss of righting reflex. Additionally the α5-/- mice showed enhanced impairment to ethanol-induced ataxia. We found the initial sensitivity to ethanol and ethanol metabolism to be similar in both α5+/+ and α5-/- mice. Hence the enhanced sedation is likely due to a difference in the acute tolerance of ethanol in mice deficient of the α5 subunit. However the α5 subunit did not play a role in ethanol consumption for ethanol concentrations ranging from 5% to 30% in the DID paradigm. Additionally, varenicline (Chantix®) was effective in reducing ethanol intake in α5-/- mice. Together, our data suggest that the α5 nAChR subunit is important for the sedative hypnotic doses of ethanol but does not play a role in ethanol consumption. Varenicline can be a treatment option even when there is loss of function of the α5 nAChR subunit.
Resumo:
BACKGROUND: Given the expanding scope of extracorporeal membrane oxygenation (ECMO) and its variable impact on drug pharmacokinetics as observed in neonatal studies, it is imperative that the effects of the device on the drugs commonly prescribed in the intensive care unit (ICU) are further investigated. Currently, there are no data to confirm the appropriateness of standard drug dosing in adult patients on ECMO. Ineffective drug regimens in these critically ill patients can seriously worsen patient outcomes. This study was designed to describe the pharmacokinetics of the commonly used antibiotic, analgesic and sedative drugs in adult patients receiving ECMO. METHODS: This is a multi-centre, open-label, descriptive pharmacokinetic (PK) study. Eligible patients will be adults treated with ECMO for severe cardiac and/or respiratory failure at five Intensive Care Units in Australia and New Zealand. Patients will receive the study drugs as part of their routine management. Blood samples will be taken from indwelling catheters to investigate plasma concentrations of several antibiotics (ceftriaxone, meropenem, vancomycin, ciprofloxacin, gentamicin, piperacillin-tazobactum, ticarcillin-clavulunate, linezolid, fluconazole, voriconazole, caspofungin, oseltamivir), sedatives and analgesics (midazolam, morphine, fentanyl, propofol, dexmedetomidine, thiopentone). The PK of each drug will be characterised to determine the variability of PK in these patients and to develop dosing guidelines for prescription during ECMO. DISCUSSION: The evidence-based dosing algorithms generated from this analysis can be evaluated in later clinical studies. This knowledge is vitally important for optimising pharmacotherapy in these most severely ill patients to maximise the opportunity for therapeutic success and minimise the risk of therapeutic failure
Resumo:
The objective of this study was to determine the sedative load and use of sedative and psychotropic medications among older people with dementia living in (residential) care homes.
Resumo:
This study investigated the sedative, cardiopulmonary, and gastrointestinal effects produced by buprenorphine and xylazine given in combination to horses. Six healthy adult horses underwent 4 randomized treatments, with an interval of 1 wk between treatments. A control group was given a saline solution intravenously (IV) and the experimental groups received buprenorphine [10 mu g/kg bodyweight (BW)] in combination with 1 of 3 different doses of xylazine: 0.25 mg/kg BW (BX25), 0.50 mg/kg BW (BX50), or 0.75 mg/kg BW (BX75), all of them by IV. Cardiopulmonary parameters were evaluated for 120 min after the drugs were administered and intestinal motility was observed for 12 h after treatment. Sedation was found to be dose-dependent in all groups receiving buprenorphine and xylazine and it was observed that the heart rate decreased in the first 5 min and increased at the end of the sedation period. Arterial blood gas tension analyses showed minimal alterations during the experiment. Gastrointestinal hypomotility was observed for up to 8 h. The combination of buprenorphine and 0.50 mg/kg BW of xylazine (BX50) provided a 30-minute period of sedation without intense ataxia and maintained cardiopulmonary parameters within acceptable limits for the species.
Resumo:
Os efeitos sedativos e antinociceptivos da levomepromazina, azaperone e midazolam foram avaliados utilizando-se três testes de comportamento em ratos e camundongos. No teste da atividade locomotora espontânea em campo aberto observou-se que tanto o comportamento exploratório como a atividade locomotora espontânea foram significativamente diminuídos quando se utilizou levomepromazina e azaperone. O efeito causado pelo azaperone foi menos prolongado quando comparado ao da levomepromazina. O midazolam causou diminuição do comportamento exploratório sem alterar a atividade locomotora espontânea. Quando se avaliou o efeito antinociceptivo por meio da latência para o reflexo da retirada da cauda em ratos após estímulo doloroso, as drogas não apresentaram nenhum efeito antinociceptivo observável. No teste das contorções em camundongos, os fármacos foram capazes de abolir as contorções quando comparados ao efeito do grupo-controle. Levomepromazina, azaperone e midazolam nas doses utilizadas foram capazes de inibir o comportamento exploratório de ratos, comprovando seus efeitos sedativos. Com relação aos efeitos antinociceptivos para dor visceral, eles foram capazes de inibir as contorções.
Resumo:
To compare the effects of morphine (MOR), methadone (MET), butorphanol (BUT) and tramadol (TRA), in combination with acepromazine, on sedation, cardiorespiratory variables, body temperature and incidence of emesis in dogs.Prospective randomized, blinded, experimental trial.Six adult mixed-breed male dogs weighing 12.0 +/- 4.3 kg.Dogs received intravenous administration (IV) of acepromazine (0.05 mg kg(-1)) and 15 minutes later, one of four opioids was randomly administered IV in a cross-over design, with at least 1-week intervals. Dogs then received MOR 0.5 mg kg(-1); MET 0.5 mg kg(-1); BUT 0.15 mg kg(-1); or TRA 2.0 mg kg(-1). Indirect systolic arterial pressure (SAP), heart rate (HR), respiratory rate (f(R)), rectal temperature, pedal withdrawal reflex and sedation were evaluated at regular intervals for 90 minutes.Acepromazine administration decreased SAP, HR and temperature and produced mild sedation. All opioids further decreased temperature and MOR, BUT and TRA were associated with further decreases in HR. Tramadol decreased SAP whereas BUT decreased f(R) compared with values before opioid administration. Retching was observed in five of six dogs and vomiting occurred in one dog in MOR, but not in any dog in the remaining treatments. Sedation scores were greater in MET followed by MOR and BUT. Tramadol was associated with minor changes in sedation produced by acepromazine alone.When used with acepromazine, MET appears to provide better sedation than MOR, BUT and TRA. If vomiting is to be avoided, MET, BUT and TRA may be better options than MOR.
Resumo:
Citrus aurantium L. is commonly used as an alternative treatment for insomnia, anxiety and epilepsy. Essential oil from peel (EOP) and hydroethanolic (70% w/v) extract (HE) from leaves were obtained. Hexanic (HF), dichloromethanic (DF) and final aqueous (AF) fractions were obtained from HE by successive partitions. Swiss male mice (35-45 g) were treated orally with 0.5 or 1.0 g/kg of these preparations 30 min before the experiments for the evaluation of the sedative/hypnotic activity (sleeping time induced by sodium pentobarbital-SPB: 40 mg/kg, i.p.), anxiolytic activity (elevated plus maze-EPM) and anticonvulsant activity (induced by pentylenetetrazole-PTZ: 85 mg/kg, se or by maximal electroshock-MES: 50 mA, 0.11s, corneal). The results showed that EOP (0.5 g/kg) increased the latency period of tonic seizures in both convulsing experimental models. This effect was not dose-dependent. Treatment with 1.0 g/kg increased the sleeping time induced by barbiturates and the time spent in the open arms of the EPM. Specific tests indicated that the preparation, in both doses used, did not promote deficits in general activity or motor coordination. HF and DF fractions (1.0 g/kg) did not interfere in the epileptic seizures, but were able to enhance the sleeping time induced by barbiturates. The results obtained with EOP in the anxiety model, and with EOP, HF and DF in the sedation model, are in accord with the ethnopharmacological use of Citrus aurantium L., which could be useful in primary medical care, after toxicological investigation.
Resumo:
Compararam-se os efeitos sedativos e antinociceptivos da romifidina (0,1mg/kg) e da xilazina (1,0mg/kg) em éguas da raça Puro Sangue Inglês. A sedação foi quantificada por meio da atividade locomotora espontânea (ALE) e altura da cabeça (AC) em baias individuais automatizadas para o estudo do comportamento. A antinocicepção foi avaliada utilizando uma lâmpada de irradiação de calor registrando-se a latência para o reflexo de retirada do membro (LRRM) e a latência para o reflexo do frêmito cutâneo (LRFC), em delineamento experimental em blocos ao acaso com 10 repetições. O efeito sedativo sobre a ALE foi de aparecimento mais rápido no grupo exposto à xilazina, ao passo que a ptose da cabeça foi mais prolongada no grupo que recebeu romifidina. A romifidina promoveu aumento da LRRM e LRFC e a xilazina não causou efeito antinociceptivo medido pela LRFC. O efeito antinociceptivo da romifidina foi mais pronunciado que o da xilazina.
Resumo:
To test the hypothesis that acepromazine could potentiate the sedative actions and attenuate the pressor response induced by dexmedetomidine, the effects of acepromazine or atropine were compared in six healthy adult dogs treated with this alpha(2)-agonist. In a randomised block design, the dogs received intravenous doses of either physiological saline, 0.05 mg/kg acepromazine or 0.04 mg/kg atropine, 15 minutes before an intravenous dose of 5 mu g/kg dexmedetomidine. The dogs' heart rate was reduced by 50 to 63 per cent from baseline and their mean arterial blood pressure was increased transiently from baseline for 20 minutes after the dexmedetomidine. Atropine prevented the alpha(2)-agonist-induced bradycardia and increased the severity and duration of the hypertension, but acepromazine did not substantially modify the cardiovascular effects of the a2-agonist, except for a slight reduction in the magnitude and duration of its pressor effects. The dexmedetomidine induced moderate to intense sedation in all the treatments, but the dogs' sedation scores did not differ among treatments. The combination of acepromazine with dexmedetomidine had no obvious advantages in comparison with dexmedetomidine alone, but the administration of atropine before dexmedetomidine is contraindicated because of a severe hypertensive response.
Resumo:
Amitraz, an acaricide used to control ectoparasites in animals has a complex pharmacological activity, including α2-adrenergic agonist action. The purpose of this research was to investigate the possible antinociceptive and/or sedative effect of amitraz in horses. The sedative effect of the intravenous (i.v.) injection of dimethylformamide (DMF, 5 mL, control) or amitraz (0.05, 0.10, 0.15 mg/kg), was investigated on the head ptosis test. The participation of α2-adrenergic receptors in the sedative effect provoked by amitraz was studied by dosing yohimbine (0.12 mg/kg, i.v.). To measure the antinociception, xylazine hydrochloride (1 mg/kg, i.v., positive control) and the same doses of amitraz and DMF were used. A focused radiant light/heat directed onto the fetlock and withers of a horse were used as a noxious stimulus to measure the hoof withdrawal reflex latency (HWRL) and the skin twitch reflex latency (STRL). The three doses of amitraz used (0.05, 0.10 and 0.15 mg/kg) provoked a dose-dependent relaxation of the cervical muscles. The experiments with amitraz and xylazine on the HWRL showed that after i.v. administration of all doses of amitraz there was a significant increase of HWRL up to 150 min after the injections. Additionally, there was a significant difference between control (DMF) and positive control (xylazine) values up to 30 min after drug injection. On the other hand, the experiments on the STRL show that after administration of amitraz at the dose of 0.15 mg/kg, a significant increase in STRL was observed when compared with the control group. This effect lasted up to 120 min after injection. However, no significant antinociceptive effect was observed with the 0.05 and 0.10 mg/kg doses of amitraz or at the 1.0 mg/kg dose of xylazine.
Resumo:
PURPOSE: To investigate the sedative and clinical effects of the pharmacopuncture with xylazine, compared to the conventional dose of a intramuscular injection in dogs.METHODS: Twelve dogs were randomly distributed in two groups of six animals and treated as follows: control group (X-IM): 1mg kg(-1) of xylazine given intramuscularly (IM); pharmacopuncture group (X-Yintang): 0.1mg kg(-1) of xylazine diluted to 0.5 mL of saline injected into the Yin Tang acupoint. Heart rate, cardiac rhythm (ECG), systolic arterial blood pressure (SABP), respiratory rate (RR), rectal temperature (RT), blood glucose concentration, degree of sedation and adverse effects were evaluated.RESULTS: Sedative effect was observed in both groups. The degree of sedation was greater in X-IM only at 15 min when compared with X-Yintang group. Cardiovascular established was observed in X-Yintang group, while marked reduction in the HR and increased incidence of ECG abnormalities were detected in X-IM. In both treatment groups, minimal changes were observed in relation to SABP, RR, RT and blood glucose. High incidence (66%) of vomiting was observed in X-IM, while this adverse effect was absent in X-Yintang.CONCLUSION: Pharmacopuncture with xylazine induced clinically relevant sedative effects in dogs, with the advantage of reduction of undesirable side effects associated with alpha(2)-agonists, including bradycardia, cardiac arrhythmias, and emesis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Norepinephrine contributes to antinociceptive, sedative, and sympatholytic responses in vivo, and α2 adrenergic receptor (α2AR) agonists are used clinically to mimic these effects. Lack of subtype-specific agonists has prevented elucidation of the role that each α2AR subtype (α2A, α2B, and α2C) plays in these central effects. Here we demonstrate that α2AR agonist-elicited sedative, anesthetic-sparing, and analgesic responses are lost in a mouse line expressing a subtly mutated α2AAR, D79N α2AAR, created by two-step homologous recombination. These functional changes are accompanied by failure of the D79N α2AAR to inhibit voltage-gated Ca2+ currents and spontaneous neuronal firing, a measure of K+ current activation. These results provide definitive evidence that the α2AAR subtype is the primary mediator of clinically important central actions of α2AR agonists and suggest that the D79N α2AAR mouse may serve as a model for exploring other possible α2AAR functions in vivo.