959 resultados para Security protocol
Resumo:
The Universal Serial Bus (USB) is an extremely popular interface standard for computer peripheral connections and is widely used in consumer Mass Storage Devices (MSDs). While current consumer USB MSDs provide relatively high transmission speed and are convenient to carry, the use of USB MSDs has been prohibited in many commercial and everyday environments primarily due to security concerns. Security protocols have been previously proposed and a recent approach for the USB MSDs is to utilize multi-factor authentication. This paper proposes significant enhancements to the three-factor control protocol that now makes it secure under many types of attacks including the password guessing attack, the denial-of-service attack, and the replay attack. The proposed solution is presented with a rigorous security analysis and practical computational cost analysis to demonstrate the usefulness of this new security protocol for consumer USB MSDs.
Resumo:
Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática
Resumo:
Security protocols preserve essential properties, such as confidentiality and authentication, of electronically transmitted data. However, such properties cannot be directly expressed or verified in contemporary formal methods. Via a detailed example, we describe the phases needed to formalise and verify the correctness of a security protocol in the state-oriented Z formalism.
Resumo:
The growing research in vehicular network solutions provided the rise of interaction in these highly dynamic environments in the market. The developed architectures do not usually focus, however, in security aspects. Common security strategies designed for the Internet require IP. Since nodes' addresses in a vehicular network are too dynamic, such solutions would require cumbersome negotiations, which would make them unsuitable to these environments. The objective of this dissertation is to develop, and test a scalable, lightweight, layer 3 security protocol for vehicular networks, in which nodes of the network are able to set up long-term security associations with a Home Network, avoiding session renegotiations due to lack of connectivity and reduce the protocol stacking. This protocol allows to provide security independent of the nodes (vehicles) position, of its addressing and of the established path to access the Internet, allowing the mobility of vehicles and of its active sessions seamlessly without communication failures.
Resumo:
Diplomityö käsittelee IPSec-protokollan (IP Security Protocol) implementointia UMTS:n (Universal Mobile Telecommunications System) pakettikytkentäiseen verkkoon. Runkoverkkoa käytetään mobiilikäyttäjän datan siirtämiseen sekä verkkoelementtien väliseen ohjausinformaation välitykseen. Koska UMTS:n runkoverkot ovat IP-pakettikytkentäisiä verkkoja, IPSec-protokollaa voidaan käyttää lähetettyjen IP-datasähkeiden suojaamiseen. IPSec- ja IKE-protokollien (Internet Key Exchange) käyttö on koettu monimutkaiseksi kiinteissä verkoissa. Tämän saman ongelman edessä tulevat olemaan myös operaattorit, kun he alkavat rakentaa UMTS-verkkojaan. On kuitenkin muistettava se, että tulevaisuudessa lähes kaikki data mukaanlukien ääni ja video on tarkoitus siirtää IP-protokollan avulla. IP-teknologiaan perustuva tiedonsiirron kasvu lisää IPSec-protokollan merkitystä ei ainoastaan runkoverkossa mutta myös radioliityntäverkoissa sekä SS7-merkinantoverkoissa (Signaling System No. 7). Diplomityö on tehty osaksi diplomi-insinöörin tutkintoa Lappeenrannan teknillisessä yliopistossa. Työ on tehty Nokia Networksin palveluksessa Helsingissä, vuosien 2002 ja 2003 välisenä aikana.
Resumo:
Extensive use of the Internet coupled with the marvelous growth in e-commerce and m-commerce has created a huge demand for information security. The Secure Socket Layer (SSL) protocol is the most widely used security protocol in the Internet which meets this demand. It provides protection against eaves droppings, tampering and forgery. The cryptographic algorithms RC4 and HMAC have been in use for achieving security services like confidentiality and authentication in the SSL. But recent attacks against RC4 and HMAC have raised questions in the confidence on these algorithms. Hence two novel cryptographic algorithms MAJE4 and MACJER-320 have been proposed as substitutes for them. The focus of this work is to demonstrate the performance of these new algorithms and suggest them as dependable alternatives to satisfy the need of security services in SSL. The performance evaluation has been done by using practical implementation method.
Resumo:
Extensive use of the Internet coupled with the marvelous growth in e-commerce and m-commerce has created a huge demand for information security. The Secure Socket Layer (SSL) protocol is the most widely used security protocol in the Internet which meets this demand. It provides protection against eaves droppings, tampering and forgery. The cryptographic algorithms RC4 and HMAC have been in use for achieving security services like confidentiality and authentication in the SSL. But recent attacks against RC4 and HMAC have raised questions in the confidence on these algorithms. Hence two novel cryptographic algorithms MAJE4 and MACJER-320 have been proposed as substitutes for them. The focus of this work is to demonstrate the performance of these new algorithms and suggest them as dependable alternatives to satisfy the need of security services in SSL. The performance evaluation has been done by using practical implementation method.
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
A method is proposed to offer privacy in computer communications, using symmetric product block ciphers. The security protocol involved a cipher negotiation stage, in which two communicating parties select privately a cipher from a public cipher space. The cipher negotiation process includes an on-line cipher evaluation stage, in which the cryptographic strength of the proposed cipher is estimated. The cryptographic strength of the ciphers is measured by confusion and diffusion. A method is proposed to describe quantitatively these two properties. For the calculation of confusion and diffusion a number of parameters are defined, such as the confusion and diffusion matrices and the marginal diffusion. These parameters involve computationally intensive calculations that are performed off-line, before any communication takes place. Once they are calculated, they are used to obtain estimation equations, which are used for on-line, fast evaluation of the confusion and diffusion of the negotiated cipher. A technique proposed in this thesis describes how to calculate the parameters and how to use the results for fast estimation of confusion and diffusion for any cipher instance within the defined cipher space.
Resumo:
This thesis addresses the problem of information hiding in low dimensional digital data focussing on issues of privacy and security in Electronic Patient Health Records (EPHRs). The thesis proposes a new security protocol based on data hiding techniques for EPHRs. This thesis contends that embedding of sensitive patient information inside the EPHR is the most appropriate solution currently available to resolve the issues of security in EPHRs. Watermarking techniques are applied to one-dimensional time series data such as the electroencephalogram (EEG) to show that they add a level of confidence (in terms of privacy and security) in an individual’s diverse bio-profile (the digital fingerprint of an individual’s medical history), ensure belief that the data being analysed does indeed belong to the correct person, and also that it is not being accessed by unauthorised personnel. Embedding information inside single channel biomedical time series data is more difficult than the standard application for images due to the reduced redundancy. A data hiding approach which has an in built capability to protect against illegal data snooping is developed. The capability of this secure method is enhanced by embedding not just a single message but multiple messages into an example one-dimensional EEG signal. Embedding multiple messages of similar characteristics, for example identities of clinicians accessing the medical record helps in creating a log of access while embedding multiple messages of dissimilar characteristics into an EPHR enhances confidence in the use of the EPHR. The novel method of embedding multiple messages of both similar and dissimilar characteristics into a single channel EEG demonstrated in this thesis shows how this embedding of data boosts the implementation and use of the EPHR securely.
Resumo:
Nowadays, information security is a very important topic. In particular, wireless networks are experiencing an ongoing widespread diffusion, also thanks the increasing number of Internet Of Things devices, which generate and transmit a lot of data: protecting wireless communications is of fundamental importance, possibly through an easy but secure method. Physical Layer Security is an umbrella of techniques that leverages the characteristic of the wireless channel to generate security for the transmission. In particular, the Physical Layer based-Key generation aims at allowing two users to generate a random symmetric keys in an autonomous way, hence without the aid of a trusted third entity. Physical Layer based-Key generation relies on observations of the wireless channel, from which harvesting entropy: however, an attacker might possesses a channel simulator, for example a Ray Tracing simulator, to replicate the channel between the legitimate users, in order to guess the secret key and break the security of the communication. This thesis work is focused on the possibility to carry out a so called Ray Tracing attack: the method utilized for the assessment consist of a set of channel measurements, in different channel conditions, that are then compared with the simulated channel from the ray tracing, to compute the mutual information between the measurements and simulations. Furthermore, it is also presented the possibility of using the Ray Tracing as a tool to evaluate the impact of channel parameters (e.g. the bandwidth or the directivity of the antenna) on the Physical Layer based-Key generation. The measurements have been carried out at the Barkhausen Institut gGmbH in Dresden (GE), in the framework of the existing cooperation agreement between BI and the Dept. of Electrical, Electronics and Information Engineering "G. Marconi" (DEI) at the University of Bologna.
Resumo:
One of the major problems that prevents the spread of elections with the possibility of remote voting over electronic networks, also called Internet Voting, is the use of unreliable client platforms, such as the voter's computer and the Internet infrastructure connecting it to the election server. A computer connected to the Internet is exposed to viruses, worms, Trojans, spyware, malware and other threats that can compromise the election's integrity. For instance, it is possible to write a virus that changes the voter's vote to a predetermined vote on election's day. Another possible attack is the creation of a fake election web site where the voter uses a malicious vote program on the web site that manipulates the voter's vote (phishing/pharming attack). Such attacks may not disturb the election protocol, therefore can remain undetected in the eyes of the election auditors. We propose the use of Code Voting to overcome insecurity of the client platform. Code Voting consists in creating a secure communication channel to communicate the voter's vote between the voter and a trusted component attached to the voter's computer. Consequently, no one controlling the voter's computer can change the his/her's vote. The trusted component can then process the vote according to a cryptographic voting protocol to enable cryptographic verification at the server's side.