900 resultados para Search engine results page
Resumo:
The search engine log files have been used to gather direct user feedback on the relevancy of the documents presented in the results page. Typically the relative position of the clicks gathered from the log files is used a proxy for the direct user feedback. In this paper we identify reasons for the incompleteness of the relative position of clicks for deciphering the user preferences. Hence, we propose the use of time spent by the user in reading through the document as indicative of user preference for a document with respect to a query. Also, we identify the issues involved in using the time measure and propose means to address them.
Resumo:
For a submitted query to multiple search engines finding relevant results is an important task. This paper formulates the problem of aggregation and ranking of multiple search engines results in the form of a minimax linear programming model. Besides the novel application, this study detects the most relevant information among a return set of ranked lists of documents retrieved by distinct search engines. Furthermore, two numerical examples aree used to illustrate the usefulness of the proposed approach.
Resumo:
Usability is a multi-dimensional characteristic of a computer system. This paper focuses on usability as a measurement of interaction between the user and the system. The research employs a task-oriented approach to evaluate the usability of a meta search engine. This engine encourages and accepts queries of unlimited size expressed in natural language. A variety of conventional metrics developed by academic and industrial research, including ISO standards,, are applied to the information retrieval process consisting of sequential tasks. Tasks range from formulating (long) queries to interpreting and retaining search results. Results of the evaluation and analysis of the operation log indicate that obtaining advanced search engine results can be accomplished simultaneously with enhancing the usability of the interactive process. In conclusion, we discuss implications for interactive information retrieval system design and directions for future usability research. © 2008 Academy Publisher.
Resumo:
La búsqueda es una de las actividades centrales en el mundo digital y, por tanto, uno de los elementos clave en el análisis de cibermedios, ya que una parte de sus audiencias y de sus ingresos procede de las páginas de resultados de los buscadores (SERP). En este trabajo, presentamos algunas de las herramientas de análisis de posicionamiento SEO más utilizadas con el fin de considerar su aplicación en estudios académicos sobre cibermedios. Aplicamos los nueve indicadores más importantes de estas herramientas a la página principal de cuatro cibermedios generalistas espanoles con el fin de estimar su viabilidad como indicadores alternativos al PageRank y otros indicadores de Google.
Resumo:
Purpose - The purpose of this paper is to identify the most popular techniques used to rank a web page highly in Google. Design/methodology/approach - The paper presents the results of a study into 50 highly optimized web pages that were created as part of a Search Engine Optimization competition. The study focuses on the most popular techniques that were used to rank highest in this competition, and includes an analysis on the use of PageRank, number of pages, number of in-links, domain age and the use of third party sites such as directories and social bookmarking sites. A separate study was made into 50 non-optimized web pages for comparison. Findings - The paper provides insight into the techniques that successful Search Engine Optimizers use to ensure a page ranks highly in Google. Recognizes the importance of PageRank and links as well as directories and social bookmarking sites. Research limitations/implications - Only the top 50 web sites for a specific query were analyzed. Analysing more web sites and comparing with similar studies in different competition would provide more concrete results. Practical implications - The paper offers a revealing insight into the techniques used by industry experts to rank highly in Google, and the success or other-wise of those techniques. Originality/value - This paper fulfils an identified need for web sites and e-commerce sites keen to attract a wider web audience.
Resumo:
Search engines have forever changed the way people access and discover knowledge, allowing information about almost any subject to be quickly and easily retrieved within seconds. As increasingly more material becomes available electronically the influence of search engines on our lives will continue to grow. This presents the problem of how to find what information is contained in each search engine, what bias a search engine may have, and how to select the best search engine for a particular information need. This research introduces a new method, search engine content analysis, in order to solve the above problem. Search engine content analysis is a new development of traditional information retrieval field called collection selection, which deals with general information repositories. Current research in collection selection relies on full access to the collection or estimations of the size of the collections. Also collection descriptions are often represented as term occurrence statistics. An automatic ontology learning method is developed for the search engine content analysis, which trains an ontology with world knowledge of hundreds of different subjects in a multilevel taxonomy. This ontology is then mined to find important classification rules, and these rules are used to perform an extensive analysis of the content of the largest general purpose Internet search engines in use today. Instead of representing collections as a set of terms, which commonly occurs in collection selection, they are represented as a set of subjects, leading to a more robust representation of information and a decrease of synonymy. The ontology based method was compared with ReDDE (Relevant Document Distribution Estimation method for resource selection) using the standard R-value metric, with encouraging results. ReDDE is the current state of the art collection selection method which relies on collection size estimation. The method was also used to analyse the content of the most popular search engines in use today, including Google and Yahoo. In addition several specialist search engines such as Pubmed and the U.S. Department of Agriculture were analysed. In conclusion, this research shows that the ontology based method mitigates the need for collection size estimation.
Resumo:
In this paper, we use time series analysis to evaluate predictive scenarios using search engine transactional logs. Our goal is to develop models for the analysis of searchers’ behaviors over time and investigate if time series analysis is a valid method for predicting relationships between searcher actions. Time series analysis is a method often used to understand the underlying characteristics of temporal data in order to make forecasts. In this study, we used a Web search engine transactional log and time series analysis to investigate users’ actions. We conducted our analysis in two phases. In the initial phase, we employed a basic analysis and found that 10% of searchers clicked on sponsored links. However, from 22:00 to 24:00, searchers almost exclusively clicked on the organic links, with almost no clicks on sponsored links. In the second and more extensive phase, we used a one-step prediction time series analysis method along with a transfer function method. The period rarely affects navigational and transactional queries, while rates for transactional queries vary during different periods. Our results show that the average length of a searcher session is approximately 2.9 interactions and that this average is consistent across time periods. Most importantly, our findings shows that searchers who submit the shortest queries (i.e., in number of terms) click on highest ranked results. We discuss implications, including predictive value, and future research.
Resumo:
This study examines the efficiency of search engine advertising strategies employed by firms. The research setting is the online retailing industry, which is characterized by extensive use of Web technologies and high competition for market share and profitability. For Internet retailers, search engines are increasingly serving as an information gateway for many decision-making tasks. In particular, Search engine advertising (SEA) has opened a new marketing channel for retailers to attract new customers and improve their performance. In addition to natural (organic) search marketing strategies, search engine advertisers compete for top advertisement slots provided by search brokers such as Google and Yahoo! through keyword auctions. The rationale being that greater visibility on a search engine during a keyword search will capture customers' interest in a business and its product or service offerings. Search engines account for most online activities today. Compared with the slow growth of traditional marketing channels, online search volumes continue to grow at a steady rate. According to the Search Engine Marketing Professional Organization, spending on search engine marketing by North American firms in 2008 was estimated at $13.5 billion. Despite the significant role SEA plays in Web retailing, scholarly research on the topic is limited. Prior studies in SEA have focused on search engine auction mechanism design. In contrast, research on the business value of SEA has been limited by the lack of empirical data on search advertising practices. Recent advances in search and retail technologies have created datarich environments that enable new research opportunities at the interface of marketing and information technology. This research uses extensive data from Web retailing and Google-based search advertising and evaluates Web retailers' use of resources, search advertising techniques, and other relevant factors that contribute to business performance across different metrics. The methods used include Data Envelopment Analysis (DEA), data mining, and multivariate statistics. This research contributes to empirical research by analyzing several Web retail firms in different industry sectors and product categories. One of the key findings is that the dynamics of sponsored search advertising vary between multi-channel and Web-only retailers. While the key performance metrics for multi-channel retailers include measures such as online sales, conversion rate (CR), c1ick-through-rate (CTR), and impressions, the key performance metrics for Web-only retailers focus on organic and sponsored ad ranks. These results provide a useful contribution to our organizational level understanding of search engine advertising strategies, both for multi-channel and Web-only retailers. These results also contribute to current knowledge in technology-driven marketing strategies and provide managers with a better understanding of sponsored search advertising and its impact on various performance metrics in Web retailing.
Resumo:
Models are becoming increasingly important in the software development process. As a consequence, the number of models being used is increasing, and so is the need for efficient mechanisms to search them. Various existing search engines could be used for this purpose, but they lack features to properly search models, mainly because they are strongly focused on text-based search. This paper presents Moogle, a model search engine that uses metamodeling information to create richer search indexes and to allow more complex queries to be performed. The paper also presents the results of an evaluation of Moogle, which showed that the metamodel information improves the accuracy of the search.
Resumo:
Ce mémoire a comme objectif de montrer le processus de localisation en langue italienne d’un site Internet français, celui du Parc de loisir du Lac de Maine. En particulier, le but du mémoire est de démontrer que, lorsqu’on parle de localisation pour le Web, on doit tenir compte de deux facteurs essentiels, qui contribuent de manière exceptionnelle au succès du site sur le Réseau Internet. D’un côté, l’utilisabilité du site Web, dite également ergonomie du Web, qui a pour objectif de rendre les sites Web plus aisés d'utilisation pour l'utilisateur final, de manière que son rapprochement au site soit intuitif et simple. De l’autre côté, l’optimisation pour les moteurs de recherche, couramment appelée « SEO », acronyme de son appellation anglais, qui cherche à découvrir les meilleures techniques visant à optimiser la visibilité d'un site web dans les pages de résultats de recherche. En améliorant le positionnement d'une page web dans les pages de résultats de recherche des moteurs, le site a beaucoup plus de possibilités d’augmenter son trafic et, donc, son succès. Le premier chapitre de ce mémoire introduit la localisation, avec une approche théorique qui en illustre les caractéristiques principales ; il contient aussi des références à la naissance et l’origine de la localisation. On introduit aussi le domaine du site qu’on va localiser, c’est-à-dire le domaine du tourisme, en soulignant l’importance de la langue spéciale du tourisme. Le deuxième chapitre est dédié à l’optimisation pour les moteurs de recherche et à l’ergonomie Web. Enfin, le dernier chapitre est consacré au travail de localisation sur le site du Parc : on analyse le site, ses problèmes d’optimisation et d’ergonomie, et on montre toutes les phases du processus de localisation, y compris l’intégration de plusieurs techniques visant à améliorer la facilité d’emploi par les utilisateurs finaux, ainsi que le positionnement du site dans les pages de résultats des moteurs de recherche.
Resumo:
La tesi tratta i concetti fondamentali legati alla "Search Engine Optimization", ovvero all’ottimizzazione dei siti web per i motori di ricerca. La SEO è un’attività multidisciplinare che coinvolge aspetti tecnici dello sviluppo web e princìpi di web marketing, allo scopo di migliorare la visibilità di un sito nelle pagine di risposta di un motore di ricerca. All’interno dell’elaborato viene analizzato dapprima il funzionamento dei motori di ricerca, con particolare riferimento al mondo Google; in seguito vengono esaminate le diverse tecniche di ottimizzazione “on-page” di un sito (codice, architettura, contenuti) e le strategie “off-page” volte a migliorare reputazione, popolarità e autorevolezza del sito stesso.
Resumo:
When a query is passed to multiple search engines, each search engine returns a ranked list of documents. Researchers have demonstrated that combining results, in the form of a "metasearch engine", produces a significant improvement in coverage and search effectiveness. This paper proposes a linear programming mathematical model for optimizing the ranked list result of a given group of Web search engines for an issued query. An application with a numerical illustration shows the advantages of the proposed method. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
This work contributes to the development of search engines that self-adapt their size in response to fluctuations in workload. Deploying a search engine in an Infrastructure as a Service (IaaS) cloud facilitates allocating or deallocating computational resources to or from the engine. In this paper, we focus on the problem of regrouping the metric-space search index when the number of virtual machines used to run the search engine is modified to reflect changes in workload. We propose an algorithm for incrementally adjusting the index to fit the varying number of virtual machines. We tested its performance using a custom-build prototype search engine deployed in the Amazon EC2 cloud, while calibrating the results to compensate for the performance fluctuations of the platform. Our experiments show that, when compared with computing the index from scratch, the incremental algorithm speeds up the index computation 2–10 times while maintaining a similar search performance.
Resumo:
Throughout the last years technologic improvements have enabled internet users to analyze and retrieve data regarding Internet searches. In several fields of study this data has been used. Some authors have been using search engine query data to forecast economic variables, to detect influenza areas or to demonstrate that it is possible to capture some patterns in stock markets indexes. In this paper one investment strategy is presented using Google Trends’ weekly query data from major global stock market indexes’ constituents. The results suggest that it is indeed possible to achieve higher Info Sharpe ratios, especially for the major European stock market indexes in comparison to those provided by a buy-and-hold strategy for the period considered.
Resumo:
This paper reports preliminary results from a study modeling the interplay between multitasking, cognitive coordination, and cognitive shifts during Web search. Study participants conducted three Web searches on personal information problems. Data collection techniques included pre- and post-search questionnaires; think-aloud protocols, Web search logs, observation, and post-search interviews. Key findings include: (1) users Web searches included multitasking, cognitive shifting and cognitive coordination processes, (2) cognitive coordination is the hinge linking multitasking and cognitive shifting that enables Web search construction, (3) cognitive shift levels determine the process of cognitive coordination, and (4) cognitive coordination is interplay of task, mechanism and strategy levels that underpin multitasking and task switching. An initial model depicts the interplay between multitasking, cognitive coordination, and cognitive shifts during Web search. Implications of the findings and further research are also discussed.