955 resultados para Schwinger Dyson equations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compare phenomenological values of the frozen QCD running coupling constant (alpha(s)) with two classes of infrared finite solutions obtained through nonperturbative Schwinger-Dyson equations. We use these same solutions with frozen coupling constants as well as their respective nonperturbative gluon propagators to compute the QCD prediction for the asymptotic pion form factor. Agreement between theory and experiment on alpha(s)(0) and F (pi)(Q(2)) is found only for one of the Schwinger-Dyson equation solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We obtain a solution for the gluon propagador in Landau gauge within two distinct approximations for the Schwinger-Dyson equations (SIDE). The first, named Mandelstam's approximation, consist in neglecting all contributions that come from fermions and ghosts fields while in the second, the ghosts fields are taken into account leading to a coupled system of integral equations. In both cases we show that a dynamical mass for the gluon propagator can arise as a solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Schwinger-Dyson equations for the nucleon and meson propagators are solved self-consistently in an approximation that goes beyond the Hartree-Fock approximation. The traditional approach consists in solving the nucleon Schwinger-Dyson equation with bare meson propagators and bare meson-nucleon vertices; the corrections to the meson propagators are calculated using the bare nucleon propagator and bare nucleon-meson vertices. It is known that such an approximation scheme produces the appearance of ghost poles in the propagators. In this paper the coupled system of Schwinger-Dyson equations for the nucleon and the meson propagators are solved self-consistently including vertex corrections. The interplay of self-consistency and vertex corrections on the ghosts problem is investigated. It is found that the self-consistency does not affect significantly the spectral properties of the propagators. In particular, it does not affect the appearance of the ghost poles in the propagators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study numerically the Schwinger-Dyson equations for the coupled system of gluon and ghost propagators in the Landau gauge and in the case of pure gauge QCD. We show that a dynamical mass for the gluon propagator arises as a solution while the ghost propagator develops an enhanced behavior in the infrared regime of QCD. Simple analytical expressions are proposed for the propagators, and the mass dependency on the ΛQCD scale and its perturbative scaling are studied. We discuss the implications of our results for the infrared behavior of the coupling constant, which, according to fits for the propagators infrared behavior, seems to indicate that α s(q2) → 0 as q2 → 0. © SISSA/ISAS 2004.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the solutions obtained for the gluon propagador in Landau gauge within two distinct approximations for the Schwinger-Dyson equations (SDE). The first, named Mandelstam's approximation, consist in neglecting all contributions that come from fermions and ghosts fields while in the second, the ghosts fields are taken into account leading to a coupled system of integral equations. In both cases we show that a dynamical mass for the gluon propagator can arise as a solution. © 2005 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possibility that the QCD coupling constant (alpha(s)) has an infrared finite behavior (freezing) has been extensively studied in recent years. We compare phenomenological values of the frozen QCD running coupling between different classes of solutions obtained through non-perturbative Schwinger-Dyson Equations. With these solutions were computed QCD predictions for the asymptotic pion form factor which, in turn, were compared with experiment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a nonperturbative study of the (1 + 1)-dimensional massless Thirring model by using path integral methods. The regularization ambiguities - coming from the computation of the fermionic determinant - allow to find new solution types for the model. At quantum level the Ward identity for the 1PI 2-point function for the fermionic current separates such solutions in two phases or sectors, the first one has a local gauge symmetry that is implemented at quantum level and the other one without this symmetry. The symmetric phase is a new solution which is unrelated to the previous studies of the model and, in the nonsymmetric phase there are solutions that for some values of the ambiguity parameter are related to well-known solutions of the model. We construct the Schwinger-Dyson equations and the Ward identities. We make a detailed analysis of their UV divergence structure and, after, we perform a nonperturbative regularization and renormalization of the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent progress in the solution of Schwinger-Dyson equations, as well as lattice simulation of pure glue QCD, indicate that the gluon propagator and coupling constant are infrared finite. Such non-perturbative information can be introduced in the QCD perturbative expansion in the scheme named Dynamical Perturbation Theory. We exemplify this procedure with the calculation of some two-body non-leptonic annihilation B meson decays, which show agreement with the experimental data in the case of a gluon propagator characterized by a dynamical gluon mass of 500MeV, compatible with the value found in several processes computed with this method. We give a. preliminary account of the application of this procedure at the loop level in the case of the Bjorken sum rule.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on some recent solutions of the Dyson-Schwinger equations for the infrared behavior of the gluon propagator and coupling constant, discussing their differences and proposing that these different behaviors can be tested through hadronic phenomenology. We discuss which kind of phenomenological tests can be applied to the gluon propagator and coupling constant, how sensitive they are to the infrared region of momenta and what specific solution is preferred by the experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the chiral symmetry breaking in QCD, using an effective potential for composite operators, with infrared finite gluon propagators that have been found by numerical calculation of the Schwinger-Dyson equations as well as in lattice simulations. The existence of a gluon propagator that is finite at k2 = 0 modifies substantially the transition between the phases with and without chiral symmetry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phenomenology of a QCD-Pomeron model based on the exchange of a pair of non-perturbative gluons, i.e. gluon fields with a finite correlation length in the vacuum, is studied in comparison with the phenomenology of QCD chiral symmetry breaking, based on non-perturbative solutions of Schwinger-Dyson equations for the quark propagator including these non-perturbative gluon effects. We show that these models are incompatible, and point out some possibles origins of this problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonperturbative infrared finite solutions for the gluon polarization tensor have been found, and the possibility that gluons may have a dynamically generated mass is supported by recent Monte Carlo simulation on the lattice. These solutions differ among themselves, due to different approximations performed when solving the Schwinger-Dyson equations for the gluon polarization tensor. Only approximations that minimize energy are meaningful, and, according to this, we compute an effective potential for composite operators as a function of these solutions in order to distinguish which one is selected by the vacuum. © 1997 Elsevier Science B.V.