985 resultados para Scale microstructure


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In tetrapod squamates, the diversity of micro-ornamentations of the epidermis of the contact areas of hands and feet is generally associated with constraints and modalities related to locomotion. Polychrus acutirostris is a medium-sized lizard that occurs in open heterogeneous habitats in South America, such as the cerrados, caatingas, and fallow lands. It progresses slowly on branches of various diameters in its arboreal environment. It can also move more rapidly on the ground. The hands and feet are prehensile and may be considered an adaptation for grasping and climbing. Epidermal surfaces from the palmar and plantar areas of the hands and feet of P. acutirostris were prepared for SEM examination, and studied at various magnifications. They show three major levels of complexity: (1) scale types, organized in gradients of size and imbrication, (2) scalar ornamentations, organized by increasing complexity and polarity, and (3) presence of Oberhautchen showing typically iguanian honeycomb micro-ornamentations. The shape and surface structure of the scales with their pattern of micro-ornamental peaks, which improve grip, and the grasping hands and feet indicate that P. acutirostris is morpho-functionally specialized for arboreality. (C) 2009 Elsevier GmbH. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nano- and meso-scale simulation of chemical ordering kinetics in nano-layered L1(0)-AB binary intermetallics was performed. In the nano- (atomistic) scale Monte Carlo (MC) technique with vacancy mechanism of atomic migration implemented with diverse models for the system energetics was used. The meso-scale microstructure evolution was, in turn, simulated by means of a MC procedure applied to a system built of meso-scale voxels ordered in particular L1(0) variants. The voxels were free to change the L1(0) variant and interacted with antiphase-boundary energies evaluated within the nano-scale simulations. The study addressed FePt thin layers considered as a material for ultra-high-density magnetic storage media and revealed metastability of the L1(0) c-variant superstructure with monoatomic planes parallel to the (001)-oriented layer surface and off-plane easy magnetization. The layers, originally perfectly ordered in the c-variant, showed discontinuous precipitation of a- and b-L1(0)-variant domains running in parallel with homogeneous disordering (i.e. generation of antisite defects). The domains nucleated heterogeneously on the free monoatomic Fe surface of the layer, grew inwards its volume and relaxed towards an equilibrium microstructure of the system. Two

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the formation of Ag-Fe nanoparticles with an ultrafine scale phase separated microstructure consisting of Ag and Fe(3)O(4) phases. Ag-Fe particles were synthesised by the co-reduction of Ag and Fe salts in water medium. The co-existing Ag and Fe(3)O(4) phase volumes were around similar to 1 nm in one of the dimensions. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hollow micro-sized H2(H2O)Nb2O6 spheres constructed by nanocrystallites have been successfully synthesized via a bubble-template assisted hydrothermal process. In the reaction process, H2O2 acts as a bubble generator and plays a key role in the formation of the hollow structure. An in situ bubble-template mechanism has been proposed for the possible formation of the hollow structure. The spherelike assemblies of these H2(H2O)Nb2O6 nanoparticles have been transformed into their corresponding pseudohexagonal phase Nb2O5 through a moderate annealing dehydration process without destroying the hierarchical structure. Optical properties of the as-prepared hollow spheres were investigated. It is exciting that the absorption edge of the hollow Nb2O5 microspheres shifts about 18 nm to the violet compared with bulk powders in the UV/vis spectra, indicating its superior optical properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to understand and predict how thermal, hydrological,mechanical and chemical (THMC) processes interact is fundamental to many research initiatives and industrial applications. We present (1) a new Thermal– Hydrological–Mechanical–Chemical (THMC) coupling formulation, based on non-equilibrium thermodynamics; (2) show how THMC feedback is incorporated in the thermodynamic approach; (3) suggest a unifying thermodynamic framework for multi-scaling; and (4) formulate a new rationale for assessing upper and lower bounds of dissipation for THMC processes. The technique is based on deducing time and length scales suitable for separating processes using a macroscopic finite time thermodynamic approach. We show that if the time and length scales are suitably chosen, the calculation of entropic bounds can be used to describe three different types of material and process uncertainties: geometric uncertainties,stemming from the microstructure; process uncertainty, stemming from the correct derivation of the constitutive behavior; and uncertainties in time evolution, stemming from the path dependence of the time integration of the irreversible entropy production. Although the approach is specifically formulated here for THMC coupling we suggest that it has a much broader applicability. In a general sense it consists of finding the entropic bounds of the dissipation defined by the product of thermodynamic force times thermodynamic flux which in material sciences corresponds to generalized stress and generalized strain rates, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic correlation (rg) analysis determines how much of the correlation between two measures is due to common genetic influences. In an analysis of 4 Tesla diffusion tensor images (DTI) from 531 healthy young adult twins and their siblings, we generalized the concept of genetic correlation to determine common genetic influences on white matter integrity, measured by fractional anisotropy (FA), at all points of the brain, yielding an NxN genetic correlation matrix rg(x,y) between FA values at all pairs of voxels in the brain. With hierarchical clustering, we identified brain regions with relatively homogeneous genetic determinants, to boost the power to identify causal single nucleotide polymorphisms (SNP). We applied genome-wide association (GWA) to assess associations between 529,497 SNPs and FA in clusters defined by hubs of the clustered genetic correlation matrix. We identified a network of genes, with a scale-free topology, that influences white matter integrity over multiple brain regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major challenge in neuroscience is finding which genes affect brain integrity, connectivity, and intellectual function. Discovering influential genes holds vast promise for neuroscience, but typical genome-wide searches assess approximately one million genetic variants one-by-one, leading to intractable false positive rates, even with vast samples of subjects. Even more intractable is the question of which genes interact and how they work together to affect brain connectivity. Here, we report a novel approach that discovers which genes contribute to brain wiring and fiber integrity at all pairs of points in a brain scan. We studied genetic correlations between thousands of points in human brain images from 472 twins and their nontwin siblings (mean age: 23.7 2.1 SD years; 193 male/279 female).Wecombined clustering with genome-wide scanning to find brain systems withcommongenetic determination.Wethen filtered the image in a new way to boost power to find causal genes. Using network analysis, we found a network of genes that affect brain wiring in healthy young adults. Our new strategy makes it computationally more tractable to discover genes that affect brain integrity. The gene network showed small-world and scale-free topologies, suggesting efficiency in genetic interactions and resilience to network disruption. Genetic variants at hubs of the network influence intellectual performance by modulating associations between performance intelligence quotient and the integrity of major white matter tracts, such as the callosal genu and splenium, cingulum, optic radiations, and the superior longitudinal fasciculus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microstructure of the anterior region of the scales in several species of the genus Aphanius was studied by SEM with the aim of determining whether scale morphology could be used to discriminate between the species of this genus. The characters examined concern the morphology of lepidonts, or “scale‐teeth”, their distribution and mode of implantation on the circuli. These characters were also subjected to UPGMA cluster analysis. Results from phenetic analysis of scale‐teeth characters agree overall with those of previously published morphological and biogeographical studies and in part with molecular analysis of the phylogenetic relationships between species of Aphanius. An affinity between A. danfordii and A. mento (found previously in studies based on osteological observations) was seen. The separation of A. apodus from the other species of the fasciatus group, which had also been noticed from molecular observations, was also observed, as well as the affinity of A. ginaonis with the group of A. dispar+A. sirhani. This study demonstrates that scale morphology can provide useful information on the relationships among species of the genus Aphanius encouraging the use of scale characters, combined with other traits, in phylogenetic analyses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small additions of B to Titanium alloys refine the as-cast microstructure significantly and hence improve their mechanical performance. In this work, tensile, fracture and fatigue properties of the as-cast and HIPed Ti-6Al-4V alloy with hypoeutectic wt.% of B additions have been examined, with particular emphasis on identifying the microstructural length scale that controls the mechanical properties of these alloys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yttrium silicates (Y-Si-O oxides), including Y2Si2O7, Y2SiO5, and Y4·67(SiO4)3O apatite, have attracted wide attentions from material scientists and engineers, because of their extensive polymorphisms and important roles as grain boundary phases in improving the high-temperature mechanical/thermal properties of Si3N4and SiC ceramics. Recent interest in these materials has been renewed by their potential applications as high-temperature structural ceramics, oxidation protective coatings, and environmental barrier coatings (EBCs). The salient properties of Y-Si-O oxides are strongly related to their unique chemical bonds and microstructure features. An in-depth understanding on the synthesis - multi-scale structure-property relationships of the Y-Si-O oxides will shine a light on their performance and potential applications. In this review, recent progress of the synthesis, multi-scale structures, and properties of the Y-Si-O oxides are summarised. First, various methods for the synthesis of Y-Si-O ceramics in the forms of powders, bulks, and thin films/coatings are reviewed. Then, the crystal structures, chemical bonds, and atomic microstructures of the polymorphs in the Y-Si-O system are summarised. The third section focuses on the properties of Y-Si-O oxides, involving the mechanical, thermal, dielectric, and tribological properties, their environmental stability, and their structure-property relationships. The outlook for potential applications of Y-Si-O oxides is also highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thixocasting requires manufacturing of billets with non-dendritic microstructure. Aluminum alloy A356 billets were produced by rheocasting in a mould placed inside a linear electromagnetic stirrer. Subsequent heat treatment was used to produce a transition from rosette to globular microstructure. The current and the duration of stirring were explored as control parameters. Simultaneous induction heating of the billet during stirring was quantified using experimentally determined thermal profiles. The effect of processing parameters on the dendrite fragmentation was discussed. Corresponding computational modeling of the process was performed using phase-field modeling of alloy solidification in order to gain insight into the process of morphological changes of a solid during this process. A non-isothermal alloy solidification model was used for simulations. The morphological evolution under such imposed thermal cycles was simulated and compared with experimentally determined one. Suitable scaling using the thermosolutal diffusion distances was used to overcome computational difficulties in quantitative comparison at system scale. The results were interpreted in the light of existing theories of microstructure refinement and globularisation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grinding media wear appears to be non-linear with the time of grinding in a laboratory-scale ball mill. The kinetics of wear can be expressed as a power law of the type w=atb, where the numerical constant a represents wear of a particular microstructure at time t = 1 min and b is the wear exponent which is independent of the particle size prevailing inside a ball mill at any instant of time of grinding. The wear exponent appears to be an indicator of the cutting wear mechanism in dry grinding: a plot of the inverse of the normalised wear exponent (Image ) versusHs (where Hs is the worn surface hardness of the media) yields a curve similar to that of a wear resistance plot obtained in the case of two-body sliding abrasive wear. This method of evaluating the cutting wear resistance of media is demonstrated by employing 15 different microstructures of AISI-SAE 52100 steel balls in dry grinding of quartz in a laboratory-scale ball mill.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distribution of particle reinforcements in cast composites is determined by the morphology of the solidification front. Interestingly, during solidification, the morphology of the interface is intrinsically affected by the presence of dispersed reinforcements. Thus the dispersoid distribution and length scale of matrix microstructure is a result of the interplay between these two. A proper combination of material and process parameters can be used to obtain composites with tailored microstructures. This requires the generation of a broad data base and optimization of the complete solidification process. The length scale of soldification microtructure has a large influence on the mechanical properties of the composites. This presentation addresses the concept of a particle distribution map which can help in predicting particle distribution under different solidification conditions Future research directions have also been indicated.