979 resultados para Satellite Data
Resumo:
Historically, it appears that some of the WRCF have survived because i) they lack sufficient quantity of commercially valuable species; ii) they are located in remote or inaccessible areas; or iii) they have been protected as national parks and sanctuaries. Forests will be protected when people who are deciding the fate of forests conclude than the conservation of forests is more beneficial, e.g. generates higher incomes or has cultural or social values, than their clearance. If this is not the case, forests will continue to be cleared and converted. In the future, the WRCF may be protected only by focused attention. The future policy options may include strategies for strong protection measures, the raising of public awareness about the value of forests, and concerted actions for reducing pressure on forest lands by providing alternatives to forest exploitation to meet the growing demands of forest products. Many areas with low population densities offer an opportunity for conservation if appropriate steps are taken now by the national governments and international community. This opportunity must be founded upon the increased public and government awareness that forests have vast importance to the welfare of humans and ecosystems' services such as biodiversity, watershed protection, and carbon balance. Also paramount to this opportunity is the increased scientific understanding of forest dynamics and technical capability to install global observation and assessment systems. High-resolution satellite data such as Landsat 7 and other technologically advanced satellite programs will provide unprecedented monitoring options for governing authorities. Technological innovation can contribute to the way forests are protected. The use of satellite imagery for regular monitoring and Internet for information dissemination provide effective tools for raising worldwide awareness about the significance of forests and intrinsic value of nature.
Resumo:
Solar UV radiation is harmful for life on planet Earth, but fortunately the atmospheric oxygen and ozone absorb almost entirely the most energetic UVC radiation photons. However, part of the UVB radiation and much of the UVA radiation reaches the surface of the Earth, and affect human health, environment, materials and drive atmospheric and aquatic photochemical processes. In order to quantify these effects and processes there is a need for ground-based UV measurements and radiative transfer modeling to estimate the amounts of UV radiation reaching the biosphere. Satellite measurements with their near-global spatial coverage and long-term data conti-nuity offer an attractive option for estimation of the surface UV radiation. This work focuses on radiative transfer theory based methods used for estimation of the UV radiation reaching the surface of the Earth. The objectives of the thesis were to implement the surface UV algorithm originally developed at NASA Goddard Space Flight Center for estimation of the surface UV irradiance from the meas-urements of the Dutch-Finnish built Ozone Monitoring Instrument (OMI), to improve the original surface UV algorithm especially in relation with snow cover, to validate the OMI-derived daily surface UV doses against ground-based measurements, and to demonstrate how the satellite-derived surface UV data can be used to study the effects of the UV radiation. The thesis consists of seven original papers and a summary. The summary includes an introduction of the OMI instrument, a review of the methods used for modeling of the surface UV using satellite data as well as the con-clusions of the main results of the original papers. The first two papers describe the algorithm used for estimation of the surface UV amounts from the OMI measurements as well as the unique Very Fast Delivery processing system developed for processing of the OMI data received at the Sodankylä satellite data centre. The third and the fourth papers present algorithm improvements related to the surface UV albedo of the snow-covered land. Fifth paper presents the results of the comparison of the OMI-derived daily erythemal doses with those calculated from the ground-based measurement data. It gives an estimate of the expected accuracy of the OMI-derived sur-face UV doses for various atmospheric and other conditions, and discusses the causes of the differences between the satellite-derived and ground-based data. The last two papers demonstrate the use of the satellite-derived sur-face UV data. Sixth paper presents an assessment of the photochemical decomposition rates in aquatic environment. Seventh paper presents use of satellite-derived daily surface UV doses for planning of the outdoor material weathering tests.
Resumo:
Terrestrial water storage (TWS) plays a key role in the global water cycle and is highly influenced by climate variability and human activities. In this study, monthly TWS, rainfall and Ganga-Brahmaputra river discharge (GBRD) are analysed over India for the period of 2003-12 using remote sensing satellite data. The spatial pattern of mean TWS shows a decrease over a large and populous region of Northern India comprising the foothills of the Himalayas, the Indo-Gangetic Plains and North East India. Over this region, the mean monthly TWS exhibits a pronounced seasonal cycle and a large interannual variability, highly correlated with rainfall and GBRD variations (r > 0.8) with a lag time of 2 months and 1 month respectively. The time series of monthly TWS shows a consistent and statistically significant decrease of about 1 cm year(-1) over Northern India, which is not associated with changes in rainfall and GBRD. This recent change in TWS suggests a possible impact of rapid industrialization, urbanization and increase in population on land water resources. Our analysis highlights the potential of the Earth-observation satellite data for hydrological applications.
Resumo:
Using remotely sensed Tropical Rainfall Measuring Mission (TRMM) 3B42 rainfall and topographic data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Digital Elevation Model (DEM), the impact of oroghraphical aspects such as topography, spatial variability of elevation and altitude of apexes are examined to investigate capacious summer monsoon rainfall over the Western Ghats (WG) of India. TRMM 3B42 v7 rainfall data is validated with Indian Meteorological Department (IMD) gridded rainfall data at 0.5 degrees resolution over the WG. The analysis of spatial pattern of monsoon rainfall with orography of the WG ascertains that the grade of orographic precipitation depends mainly on topography of the mountain barrier followed by steepness of windward side slope and altitude of the mountain. Longer and broader, i.e. cascaded topography, elevated summits and gradually increasing slopes impel the enhancement in precipitation. Comparing topography of various states of the WG, it has been observed that windward side of Karnataka receives intense rainfall in the WG during summer monsoon. It has been observed that the rainfall is enhanced before the peak of the mountain and confined up to the height about 800m over the WG. In addition to this, the spatial distribution of heavy and very heavy rainfall events in the last 14 years has also been explored. Heavy and very heavy rain events on this hilly terrain are categorized with a threshold of precipitation (R) in the range 150>R>120mmday(-1) and exceeding 150mmday(-1) using probability distribution of TRMM 3B42 v7 rainfall. The areas which are prone to heavy precipitation are identified. The study would help policy makers to manage the hazard scenario and, to improve weather predictions on mountainous terrain of the WG.
Resumo:
Anthropogenic aerosols play a crucial role in our environment, climate, and health. Assessment of spatial and temporal variation in anthropogenic aerosols is essential to determine their impact. Aerosols are of natural and anthropogenic origin and together constitute a composite aerosol system. Information about either component needs elimination of the other from the composite aerosol system. In the present work we estimated the anthropogenic aerosol fraction (AF) over the Indian region following two different approaches and inter-compared the estimates. We espouse multi-satellite data analysis and model simulations (using the CHIMERE Chemical transport model) to derive natural aerosol distribution, which was subsequently used to estimate AF over the Indian subcontinent. These two approaches are significantly different from each other. Natural aerosol satellite-derived information was extracted in terms of optical depth while model simulations yielded mass concentration. Anthropogenic aerosol fraction distribution was studied over two periods in 2008: premonsoon (March-May) and winter (November-February) in regard to the known distinct seasonality in aerosol loading and type over the Indian region. Although both techniques have derived the same property, considerable differences were noted in temporal and spatial distribution. Satellite retrieval of AF showed maximum values during the pre-monsoon and summer months while lowest values were observed in winter. On the other hand, model simulations showed the highest concentration of AF in winter and the lowest during pre-monsoon and summer months. Both techniques provided an annual average AF of comparable magnitude (similar to 0.43 +/- 0.06 from the satellite and similar to 0.48 +/- 0.19 from the model). For winter months the model-estimated AF was similar to 0.62 +/- 0.09, significantly higher than that (0.39 +/- 0.05) estimated from the satellite, while during pre-monsoon months satellite-estimated AF was similar to 0.46 +/- 0.06 and the model simulation estimation similar to 0.53 +/- 0.14. Preliminary results from this work indicate that model-simulated results are nearer to the actual variation as compared to satellite estimation in view of general seasonal variation in aerosol concentrations.
Resumo:
Land-cover changes in China are being powered by demand for food for its growing population and by the nation's transition from a largely rural society to one in which more than half of its people are expected to live in cities within two decades. Here we use an analysis of remotely sensed data gathered between 1990 and 2000, to map the magnitude and pattern of changes such as the conversion of grasslands and forests to croplands and the loss of croplands to urban expansion. With high-resolution ( 30 m) imagery from Landsat TM for the entire country, we show that between 1990 and 2000 the cropland area increased by 2.99 million hectares and urban areas increased by 0.82 million hectares. In northern China, large areas of woodlands, grasslands and wetlands were converted to croplands, while in southern China large areas of croplands were converted to urban areas. The land-cover products presented here give the Chinese government and international community, for the first time, an unambiguous understanding of the degree to which the nation's landscape is being altered. Documentation of these changes in a reliable and spatially explicit way forms the foundation for management of China's environment over the coming decades.
Resumo:
A modelling scheme is described which uses satellite retrieved sea-surface temperature and chlorophyll-a to derive monthly zooplankton biomass estimates in the eastern North Atlantic; this forms part of a bio-physical model of inter-annual variations in the growth and survival of larvae and post-larvae of mackerel (Scomber scombrus). The temperature and chlorophyll data are incorporated first to model copepod (Calanus) egg production rates. Egg production is then converted to available food using distribution data from the Continuous Plankton Recorder (CPR) Survey, observed population biomass per unit daily egg production and the proportion of the larval mackerel diet comprising Calanus. Results are validated in comparison with field observations of zooplankton biomass. The principal benefit of the modelling scheme is the ability to use the combination of broad scale coverage and fine scale temporal and spatial variability of satellite data as driving forces in the model; weaknesses are the simplicity of the egg production model and the broad-scale generalizations assumed in the raising factors to convert egg production to biomass.
Resumo:
Observations of Earth from space have been made for over 40 years and have contributed to advances in many aspects of climate science. However, attempts to exploit this wealth of data are often hampered by a lack of homogeneity and continuity and by insufficient understanding of the products and their uncertainties. There is, therefore, a need to reassess and reprocess satellite datasets to maximize their usefulness for climate science. The European Space Agency has responded to this need by establishing the Climate Change Initiative (CCI). The CCI will create new climate data records for (currently) 13 essential climate variables (ECVs) and make these open and easily accessible to all. Each ECV project works closely with users to produce time series from the available satellite observations relevant to users' needs. A climate modeling users' group provides a climate system perspective and a forum to bring the data and modeling communities together. This paper presents the CCI program. It outlines its benefit and presents approaches and challenges for each ECV project, covering clouds, aerosols, ozone, greenhouse gases, sea surface temperature, ocean color, sea level, sea ice, land cover, fire, glaciers, soil moisture, and ice sheets. It also discusses how the CCI approach may contribute to defining and shaping future developments in Earth observation for climate science.