934 resultados para Satelites artificiais – Rotação


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aims of this work are to analyze the direct solar radiation pressure torque (TPRS) in the rotational motion of spin-stabilized artificial satellites, to numerically implement these solutions and to compare the results with real data of the Brazilian Satellite Data Collection SCD1 and SCD2, supplied by INPE. The mathematical model for this torque is determined for a cylindrical satellite, and the components of this torque are determined in a fixed system in the satellite. An analytical solution for the spin motion equations is proposed, in which TPRSD does not affect the spin velocity of the satellite. Two approaches are adopted in the numerical implementation of the developed theory: the first one considers the proposed theory and the second introduces a variation in the spin velocity based on its real variation. The results obtained indicate that the solar radiation pressure torque has little influence in the right ascension and declination axis of rotation due to the small dimension of the satellite and altitude in which it is found. To better validate the application of the presented theory, the angular deviation of the spin axis and solar aspect angle were also analyzed. The comparison of the results of the approaches conducted with real data show good precision in the theory, which can be applied in the prediction of the rotational motion of the spin-stabilized artificial satellites, when others external torques are considered besides the direct solar radiation pressure torque

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Física - FEG

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to analyze the stability of the rotational motion’s artificial satellite using the Routh Hurwitz Algorithm (CRH) and the quaternions to describe the satellite’s attitude. This algorithm allows the investigation of the stability of the motion using the coefficients of the characteristic equation associated with the equation of the rotational motion in the linear form. The equations of the rotational motion are given by the four cinematic equations for the quaternion and the three equations of Euler for the spin velocity’s components. In the Euler equations are included the components of the gravity gradient torque (TGG) and the solar radiation torque (TRS). The TGG is generated by the difference of the Earth gravity force direction and intensity actuating on each satellite mass element and it depends on the mass distribution and the form of the satellite. The TRS is created by changing of the linear momentum, which happens due to the interactions of solar photons with the satellite surface. The equilibrium points are gotten by the equation of rotational motion and the CRH is applied in the linear form of these equations. Simulations are developed for small and medium satellites, but the gotten equilibrium points are not stable by CRH. However, when some of the eigenvalues of the characteristic equation are analyzed, it is found some equilibrium points which can be pointed out as stables for an interval of the time, due to small magnitude of the real part of these eigenvalue

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Física - FEG

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The dynamics of the rotation of a satellite is an old and classical problem, specially in the Euler formalism. However, with these variables, even in torque free motion problem, the integrability of the system is far from trivial, mainly when the three moments of the inertia are not equal. Another disadvantage occurs when the inclinations between some plans are null or close to zero, so the nodes become undetermined. In this work, we propose the use of modern Andoyer's variables. These are a set of canonical variables and therefore some significant advantages can be obtained when dealing with perturbation methods. On other the hand, the integrability of the torque free motion becomes very clear, as the system is reduced to a problem of one degree of freedom. The elimination of the singularities mentioned above, can be solved very easily, with Pincaré-type variables. In this work we give the background concepts of the Andoyer's variables and the disturbing potential is obtained for the rotational dynamics of a satellite perturbed by a planet. In the case when A = B (moments of inertia) and due to the current variables, the averaged system is trivially obtained through very simple integrations

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)