932 resultados para Saddle fixed points


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare collisions of a classical particle bouncing between two walls are studied. The dynamics is described by a two-dimensional, nonlinear and area-preserving mapping in the variables velocity and time at the instant that the particle collides with the moving wall. The phase space is of mixed type preventing diffusion of the particle to high energy. Successive and therefore rare collisions are shown to have a histogram of frequency which is scaling invariant with respect to the control parameters. The saddle fixed points are studied and shown to be scaling invariant with respect to the control parameters too. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let f: M -> M be a fiber-preserving map where S -> M -> B is a bundle and S is a closed surface. We study the abelianized obstruction, which is a cohomology class in dimension 2, to deform f to a fixed point free map by a fiber-preserving homotopy. The vanishing of this obstruction is only a necessary condition in order to have such deformation, but in some cases it is sufficient. We describe this obstruction and we prove that the vanishing of this class is equivalent to the existence of solution of a system of equations over a certain group ring with coefficients given by Fox derivatives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main purpose of this work is to study fixed points of fiber-preserving maps over the circle S(1) for spaces which are fiber bundles over S(1) and the fiber is the Klein bottle K. We classify all such maps which can be deformed fiberwise to a fixed point free map. The similar problem for torus fiber bundles over S(1) has been solved recently.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main purpose of this work is to study fixed points of fiber-preserving maps over the circle S-1 for spaces which axe fibrations over S-1 and the fiber is the torus T. For the case where the fiber is a surface with nonpositive Euler characteristic, we establish general algebraic conditions, in terms of the fundamental group and the induced homomorphism, for the existence of a deformation of a map over S-1 to a fixed point, free map. For the case where the fiber is a torus, we classify all maps over S-1 which can be deformed fiberwise to a fixed point free map.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let f: M -> M be a fiber-preserving map where S -> M -> B is a bundle and S is a closed surface. We study the abelianized obstruction, which is a cohomology class in dimension 2, to deform f to a fixed point free map by a fiber-preserving homotopy. The vanishing of this obstruction is only a necessary condition in order to have such deformation, but in some cases it is sufficient. We describe this obstruction and we prove that the vanishing of this class is equivalent to the existence of solution of a system of equations over a certain group ring with coefficients given by Fox derivatives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main purpose of this work is to study fixed points of fiber-preserving maps over the circle S(1) for spaces which are fiber bundles over S(1) and the fiber is the Klein bottle K. We classify all such maps which can be deformed fiberwise to a fixed point free map. The similar problem for torus fiber bundles over S(1) has been solved recently.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that if a gauge theory with dynamical symmetry breaking has nontrivial fixed points, they will correspond to extrema of the vacuum energy. This relationship provides a different method to determine fixed points.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Convergence to a period one fixed point is investigated for both logistic and cubic maps. For the logistic map the relaxation to the fixed point is considered near a transcritical bifurcation while for the cubic map it is near a pitchfork bifurcation. We confirmed that the convergence to the fixed point in both logistic and cubic maps for a region close to the fixed point goes exponentially fast to the fixed point and with a relaxation time described by a power law of exponent -1. At the bifurcation point, the exponent is not universal and depends on the type of the bifurcation as well as on the nonlinearity of the map.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Report for the scientific sojourn at the Research Institute for Applied Mathematics and Cybernetics, Nizhny Novgorod, Russia, from July to September 2006. Within the project, bifurcations of orbit behavior in area-preserving and reversible maps with a homoclinic tangency were studied. Finitely smooth normal forms for such maps near saddle fixed points were constructed and it was shown that they coincide in the main order with the analytical Birkhoff-Moser normal form. Bifurcations of single-round periodic orbits for two-dimensional symplectic maps close to a map with a quadratic homoclinic tangency were studied. The existence of one- and two-parameter cascades of elliptic periodic orbits was proved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some scaling properties of the regular dynamics for a dissipative version of the one-dimensional Fermi accelerator model are studied. The dynamics of the model is given in terms of a two-dimensional nonlinear area contracting map. Our results show that the velocities of saddle fixed points (saddle velocities) can be described using scaling arguments for different values of the control parameter. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of transient dynamical phenomena near bifurcation thresholds has attracted the interest of many researchers due to the relevance of bifurcations in different physical or biological systems. In the context of saddle-node bifurcations, where two or more fixed points collide annihilating each other, it is known that the dynamics can suffer the so-called delayed transition. This phenomenon emerges when the system spends a lot of time before reaching the remaining stable equilibrium, found after the bifurcation, because of the presence of a saddle-remnant in phase space. Some works have analytically tackled this phenomenon, especially in time-continuous dynamical systems, showing that the time delay, tau, scales according to an inverse square-root power law, tau similar to (mu-mu (c) )(-1/2), as the bifurcation parameter mu, is driven further away from its critical value, mu (c) . In this work, we first characterize analytically this scaling law using complex variable techniques for a family of one-dimensional maps, called the normal form for the saddle-node bifurcation. We then apply our general analytic results to a single-species ecological model with harvesting given by a unimodal map, characterizing the delayed transition and the scaling law arising due to the constant of harvesting. For both analyzed systems, we show that the numerical results are in perfect agreement with the analytical solutions we are providing. The procedure presented in this work can be used to characterize the scaling laws of one-dimensional discrete dynamical systems with saddle-node bifurcations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report experimental and numerical results showing how certain N-dimensional dynamical systems are able to exhibit complex time evolutions based on the nonlinear combination of N-1 oscillation modes. The experiments have been done with a family of thermo-optical systems of effective dynamical dimension varying from 1 to 6. The corresponding mathematical model is an N-dimensional vector field based on a scalar-valued nonlinear function of a single variable that is a linear combination of all the dynamic variables. We show how the complex evolutions appear associated with the occurrence of successive Hopf bifurcations in a saddle-node pair of fixed points up to exhaust their instability capabilities in N dimensions. For this reason the observed phenomenon is denoted as the full instability behavior of the dynamical system. The process through which the attractor responsible for the observed time evolution is formed may be rather complex and difficult to characterize. Nevertheless, the well-organized structure of the time signals suggests some generic mechanism of nonlinear mode mixing that we associate with the cluster of invariant sets emerging from the pair of fixed points and with the influence of the neighboring saddle sets on the flow nearby the attractor. The generation of invariant tori is likely during the full instability development and the global process may be considered as a generalized Landau scenario for the emergence of irregular and complex behavior through the nonlinear superposition of oscillatory motions

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Principal curves have been defined Hastie and Stuetzle (JASA, 1989) assmooth curves passing through the middle of a multidimensional dataset. They are nonlinear generalizations of the first principalcomponent, a characterization of which is the basis for the principalcurves definition.In this paper we propose an alternative approach based on a differentproperty of principal components. Consider a point in the space wherea multivariate normal is defined and, for each hyperplane containingthat point, compute the total variance of the normal distributionconditioned to belong to that hyperplane. Choose now the hyperplaneminimizing this conditional total variance and look for thecorresponding conditional mean. The first principal component of theoriginal distribution passes by this conditional mean and it isorthogonal to that hyperplane. This property is easily generalized todata sets with nonlinear structure. Repeating the search from differentstarting points, many points analogous to conditional means are found.We call them principal oriented points. When a one-dimensional curveruns the set of these special points it is called principal curve oforiented points. Successive principal curves are recursively definedfrom a generalization of the total variance.