66 resultados para Saccostrea cucullata
Resumo:
Universidad de Las Palmas de Gran Canaria. Departamento de Biología. Programa de doctorado de Gestión de recursos vivos marinos y medioambiente ; bienio 2006-2008
Resumo:
[ES] El hecho de que algunas especies de moluscos como Saccostrea cucullata (Born) y Harpa rosea Lamarck, de extrema exigencia ecológica, que habitan en el Golfo de Guinea aparezcan fósiles en yacimientos de Canarias, ha permitido conocer condiciones oceánicas durante los ultimos interglaciales (inicios del Pleistoceno superior y del Pleistoceno medio tardío) mediante modernas técnicas de teledetección espacial que permitirían comparar ambos entornos geográficos. Lo primero que se ha realizado ha sido la identificación de ambas especies y la recopilación de las citas geográficas aparecidas en la bibliografía desde 1758, fecha de publicación de la décima edición del Systema Naturae de Linné y de la nomenclatura válida zoológica. Además, se ha recopilado la información geológica y dataciones radiométricas aportadas por la bibliografia desde el siglo XIX hasta la actualidad sobre los depósitos canarios que contenían los ejemplares fósiles estudiados. La morfología de los ejemplares fósiles fue contrastada con la de los ejemplares actuales, todos ellos en las Colecciones del Laboratorio de Paleontologia de la Universidad de Las Palmas de Gran Canaria.
Resumo:
[EN] The last 5 Myr are characterized by cliamatic variations globally and are reflected in ancient fossiliferous marine deposits visible in the Canary Islands. The fossils contained are identificated as paleoecological and paleoclimatic indicators. The Mio-Pliocene Transit is represented by the coral Siderastrea micoenica Osasco, 1897; the gastropods Rothpletzia rudista Simonelli, 1890; Ancilla glandiformis (Lamarck, 1822); Strombus coronatus Defrance, 1827 and Nerita emiliana Mayer, 1872 and the bivalve Gryphaea virleti Deshayes, 1832 as most characteristic fossils and typical of a very warm climate and littoral zone. Associated lava flows have been dated radiometrically and provides a range between 8.9 and about 4.2 Kyr. In the mid-Pleistocene, about 400,000 years ago, the called Marine Isotope Stage 11, a strong global warming that caused a sea level rise happens. Remains of the MIS 11 are preserved on the coast of Arucas (Gran Canaria), and associated with a tsunami in Piedra Alta (Lanzarote). These fossilifeorus deposits contains the bivalve Saccostrea cucullata (Born, 1780), the gastropod Purpurellus gambiensis (Reeve, 1845) and the corals Madracis pharensis (Heller, 1868) and Dendrophyllia cornigera (Lamarck, 1816). Both sites have been dated by K-Ar on pillow lavas (approximately 420,000 years) and by Uranium Series on corals (about 481,000 years) respectively. The upper Pleistocene starts with another strong global warming known as the last interglacial or marine isotope stage (MIS) 5.5, about 125,000 years ago, which also left marine fossil deposits exposed in parallel to current in Igueste of San Andrés (Tenerife), El Altillo, the city of Las Palmas de Gran Canaria and Maspalomas (Gran Canaria), Matas Blancas, the Playitas and Morrojable (Fuerteventura ) and in Playa Blanca and Punta Penedo (Lanzarote ). The fossil coral Siderastrea radians (Pallas , 1766 ) currently living in the Cape Verde Islands , the Gulf of Guinea and the Caribbean has allowed Uranium series dating. The gastropods Strombus bubonius Lamarck, 1822 and Harpa doris (Röding , 1798 ) currently living in the Gulf of Guinea. Current biogeography using synoptic data obtained through satellites provided by the ISS Canary Seas provides data of Ocean Surface Temperature (SST) and Chlorophyll a (Chlor a) . This has allowed the estimation of these sea conditions during interglacials compared to today .
Resumo:
The presence of Harpa doris Röding, 1798 in marine deposits of the last interglacial period, ~130-120 ka (marine isotope stage or MIS 5.5) in the Canary Islands (Gran Canaria, Lanzarote and Fuerteventura) enabled us to compare this occurrence with its present habitat in the Gulf of Guinea and the Cape Verde Islands, well to the south. This comparison leads to the conclusion that sea surface temperatures (SSTs) in the waters around the Canary Islands during the last interglacial period were at least 3.3 °C higher than today. H. doris is found in association with the large gastropod Persististrombus latus (Gmelin, 1791) as well as the coral Siderastrea radians (Pallas, 1766). The presence of these extralimital southern,warm-water species in the Canary Islands during the last interglacial period also implies a northward expansion of plankton-feeding larvae in seawater with a high chlorophyll-a content. Such conditionswould require a shortening of the southern arm of the cool Canary Current that dominates the waters around the Canary Islands at present. Marine deposits dating to ~400 ka (MIS 11) are also found on the Canary Islands. In these deposits, the presence of Saccostrea cucullata (Born, 1778) allows a comparison with its present habitat in the Gulf of Guinea. In this analysis, we conclude that SSTs in waters around the Canary Islands during this major interglacial period were at least 4.2 °C higher than today. Middle Pleistocene fossils of S. cucullata have also been found in the western Mediterranean Sea and Morocco, as well as the Cape Verde Islands. If these deposits also date to MIS 11, SST warming could have been a regional phenomenon, including much of the eastern Atlantic Ocean and Mediterranean Sea.
Resumo:
DNA probes were used in in situ hybridisation on histological sections of oysters exposed for defined intervals to Marteilia sydneyi infection to reveal the early development of the parasite in the oyster host, Saccostrea glomerata. The initial infective stages enter through the palps and gills whereupon extrasporogonic proliferation results in the liberation of cells into surrounding connective tissue and haemolymph spaces. Following systemic dissemination, the parasite infiltrates the digestive gland and becomes established as a nurse cell beneath the epithelial cells ill a digestive tubule. Here, cell-within-cell proliferation results in the eventual liberation of daughter cells from the nurse cell into spaces between adjacent epithelial cells. None of these stages had previously been described. Proliferation is associated with host responses, including haemocytic infiltration of the connective tissue and diapedesis across tubule epithelia. The responses cease as sporogenesis begins. (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Experimental mechanical sieving methods are applied to samples of shellfish remains from three sites in southeast Queensland, Seven Mile Creek Mound, Sandstone Point and One-Tree, to test the efficacy of various recovery and quantification procedures commonly applied to shellfish assemblages in Australia. There has been considerable debate regarding the most appropriate sieve sizes and quantification methods that should be applied in the recovery of vertebrate faunal remains. Few studies, however, have addressed the impact of recovery and quantification methods on the interpretation of invertebrates, specifically shellfish remains. In this study, five shellfish taxa representing four bivalves (Anadara trapezia, Trichomya hirsutus, Saccostrea glomerata, Donax deltoides) and one gastropod (Pyrazus ebeninus) common in eastern Australian midden assemblages are sieved through 10mm, 6.3mm and 3.15mm mesh. Results are quantified using MNI, NISP and weight. Analyses indicate that different structural properties and pre- and postdepositional factors affect recovery rates. Fragile taxa (T. hirsutus) or those with foliated structure (S. glomerata) tend to be overrepresented by NISP measures in smaller sieve fractions, while more robust taxa (A. trapezia and P. ebeninus) tend to be overrepresented by weight measures. Results demonstrate that for all quantification methods tested a 3mm sieve should be used on all sites to allow for regional comparability and to effectively collect all available information about the shellfish remains.
Resumo:
Effluent water from shrimp ponds typically contains elevated concentrations of dissolved nutrients and suspended particulates compared to influent water. Attempts to improve effluent water quality using filter feeding bivalves and macroalgae to reduce nutrients have previously been hampered by the high concentration of clay particles typically found in untreated pond effluent. These particles inhibit feeding in bivalves and reduce photosynthesis in macroalgae by increasing effluent turbidity. In a small-scale laboratory study, the effectiveness of a three-stage effluent treatment system was investigated. In the first stage, reduction in particle concentration occurred through natural sedimentation. In the second stage, filtration by the Sydney rock oyster, Saccostrea commercialis (Iredale and Roughley), further reduced the concentration of suspended particulates, including inorganic particles, phytoplankton, bacteria, and their associated nutrients. In the final stage, the macroalga, Gracilaria edulis (Gmelin) Silva, absorbed dissolved nutrients. Pond effluent was collected from a commercial shrimp farm, taken to an indoor culture facility and was left to settle for 24 h. Subsamples of water were then transferred into laboratory tanks stocked with oysters and maintained for 24 h, and then transferred to tanks containing macroalgae for another 24 h. Total suspended solid (TSS), chlorophyll a, total nitrogen (N), total phosphorus (P), NH4+, NO3-, and PO43-, and bacterial numbers were compared before and after each treatment at: 0 h (initial); 24 h (after sedimentation); 48 h (after oyster filtration); 72 h (after macroalgal absorption). The combined effect of the sequential treatments resulted in significant reductions in the concentrations of all parameters measured. High rates of nutrient regeneration were observed in the control tanks, which did not contain oysters or macroalgae. Conversely, significant reductions in nutrients and suspended particulates after sedimentation and biological treatment were observed. Overall, improvements in water quality (final percentage of the initial concentration) were as follows: TSS (12%); total N (28%); total P (14%); NH4+ (76%); NO3- (30%); PO43-(35%); bacteria (30%); and chlorophyll a (0.7%). Despite the probability of considerable differences in sedimentation, filtration and nutrient uptake rates when scaled to farm size, these results demonstrate that integrated treatment has the potential to significantly improve water quality of shrimp farm effluent. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Current shrimp pond management practices generally result in elevated concentrations of nutrients, suspended solids, bacteria and phytoplankton compared with the influent water. Concerns about adverse environmental impacts caused by discharging pond effluent directly into adjacent waterways have prompted the search for cost-effective methods of effluent treatment. One potential method of effluent treatment is the use of ponds or raceways stocked with plants or animals that act as natural biofilters by removing waste nutrients. In addition to improving effluent water quality prior to discharge, the use of natural biofilters provides a method for capturing otherwise wasted nutrients. This study examined the potential of the native oyster, Saccostrea commercialis (Iredale and Roughley) and macroalgae, Gracilaria edulis (Gmelin) Silva to improve effluent water quality from a commercial Penaeus japonicus (Bate) shrimp farm, A system of raceways was constructed to permit recirculation of the effluent through the oysters to maximize the filtration of bacteria, phytoplankton and total suspended solids. A series of experiments was conducted to test the ability of oysters and macroalgae to improve effluent water quality in a flow-through system compared with a recirculating system. In the flow-through system, oysters reduced the concentration of bacteria to 35% of the initial concentration, chlorophyll a to 39%, total particulates (2.28-35.2 mum) to 29%, total nitrogen to 66% and total phosphorus to 56%. Under the recirculating flow regime, the ability of the oysters to improve water quality was significantly enhanced. After four circuits, total bacterial numbers were reduced to 12%, chlorophyll a to 4%, and total suspended solids to 16%. Efforts to increase biofiltration by adding additional layers of oyster trays and macroalgae-filled mesh bags resulted in fouling of the lower layers causing the death of oysters and senescence of macroalgae. Supplementary laboratory experiments were designed to examine the effects of high effluent concentrations of suspended particulates on the growth and condition of oysters and macroalgae. The results demonstrated that high concentrations of particulates inhibited growth and reduced the condition of oysters and macroalgae. Allowing the effluent to settle before biofiltration improved growth and reduced signs of stress in the oysters and macroalgae. A settling time of 6 h reduced particulates to a level that prevented fouling of the oysters and macroalgae.
Resumo:
Primers and DNA probes designed for use in the specific detection of the paramyxean parasites Marteilia sydneyi and Marteilia refringens were tested for their potential to cross-react with closely related species in Polymerase Chain Reaction (PCR) and in situ hybridization. PCR primers and a DNA probe designed within the ITS1 rRNA of M. sydneyi were specific for M. sydneyi when compared with related species of Marteilia and Marteilioides. PCR primers designed within the 18S rRNA of M. refringens were specific in the detection of this species in PCR while a DNA probe (named Smart 2) designed on the same gene cross-reacted with M. sydneyi in tissue sections of Saccostrea glomerata as well as Marteilioides sp. infecting Striostrea mytiloides. Though not species specific, the Smart 2 probe provided a stronger signal in detection of all stages of M. sydneyi than the ITS1 probe. The ITS probe is proposed for use as a confirmatory diagnostic too] for M. sydneyi.
Resumo:
The sediments of Deep Sea Drilling Project Site 565 and University of Texas Marine Science Institute Cores IG-24-7-38 to -42 taken on the landward slope of the Middle America Trench exhibit characteristics of material subject to reworking during downslope mass flow. These characteristics include a generally homogeneous texture, lack of sedimentary structures, pervasive presence of a penetrative scaly fabric, and presence of transported benthic foraminifers. Although these features occur throughout the sediments examined, trends in bulk density, porosity, and water content, and abrupt shifts in these index physical properties and in sediment magnetic properties at Site 565 indicate that downslope sediment creep is presently most active in the upper 45 to 50 m of sediment. It cannot be determined whether progressive dewatering of sediment has brought the material at this depth to a plastic limit at which sediment can no longer flow (thus resulting in its accretion to the underlying sediments) or whether this depth represents a surface along which slumping has occurred. We suspect both are true in part, that is, that mass movements and downslope reworking accumulate sediments in a mobile layer of material that is self-limiting in thickness.
Resumo:
The vegetation pattern of siliceous boulder snow beds (Dicranoweision crispulae all. nov. prov.) of Svalbard was investigated by using transect studies in several places on Spitsbergen. Dicranoweisia crispula is the best diagnostic species. It is found throughout the whole snow bed, is a good differential species against Racomitrium lanuginosum communities above the snow bed, and does not occur on basic rocks. Three Andreaea spp. are also among the most important members of these communities. They are all acidophilous, but with different pH preferences. Eight weakly acidophilous species lacking both on basic and on gneissic/granitic rocks, are reported from Svalbard. Half of these are characteristic species of Dicranoweision crispulae on Svalbard.
Resumo:
Little is known about the impact of changing temperature regimes on composition and diversity of cryptogam communities in the Arctic and Subarctic, despite the well-known importance of lichens and bryophytes to the functioning and climate feedbacks of northern ecosystems. We investigated changes in diversity and abundance of lichens and bryophytes within long-term (9-16 years) warming experiments and along natural climatic gradients, ranging from Swedish subarctic birch forest and subarctic/subalpine tundra to Alaskan arctic tussock tundra. In both Sweden and Alaska, lichen diversity responded negatively to experimental warming (with the exception of a birch forest) and to higher temperatures along climatic gradients. Bryophytes were less sensitive to experimental warming than lichens, but depending on the length of the gradient, bryophyte diversity decreased both with increasing temperatures and at extremely low temperatures. Among bryophytes, Sphagnum mosses were particularly resistant to experimental warming in terms of both abundance and diversity. Temperature, on both continents, was the main driver of species composition within experiments and along gradients, with the exception of the Swedish subarctic birch forest where amount of litter constituted the best explanatory variable. In a warming experiment in moist acidic tussock tundra in Alaska, temperature together with soil ammonium availability were the most important factors influencing species composition. Overall, dwarf shrub abundance (deciduous and evergreen) was positively related to warming but so were the bryophytes Sphagnum girgensohnii, Hylocomium splendens and Pleurozium schreberi; the majority of other cryptogams showed a negative relationship to warming. This unique combination of intercontinental comparison, natural gradient studies and experimental studies shows that cryptogam diversity and abundance, especially within lichens, is likely to decrease under arctic climate warming. Given the many ecosystem processes affected by cryptogams in high latitudes (e.g. carbon sequestration, N2-fixation, trophic interactions), these changes will have important feedback consequences for ecosystem functions and climate.