951 resultados para STARS: POPULATION II
Resumo:
With the goal of studying ML along the RGB, mid-IR observations of a carefully selected sample of 17 Galactic globular clusters (GGCs) with different metallicity and horizontal branch (HB) morphology have been secured with IRAC on board Spitzer: a global sample counting about 8000 giant has been obtained. Suitable complementary photometry in the optical and near-IR has been also secured in order to properly characterize the stellar counterparts to the Spitzer sources and their photospheric parameters. Stars with color (i.e. dust) excess have been identified, their likely circumstellar emission quantified and modelled, and empirical estimates of mass loss rates and timescales obtained. We find that mass loss rates increases with increasing stellar luminosity and decreasing metallicity. For a given luminosity, we find that ML rates are systematically higher than the prediction by extrapolating the Reimers law. CMDs constructed from ground based near-IR and IRAC bands show that at a given luminosity some stars have dusty envelopes and others do not. From this, we deduce that the mass loss is episodic and is ``on'' for some fraction of the time. The total mass lost on the RGB can be easily computed by multiplying ML rates by the ML timescales and integrating over the evolutionary timescale. The average total mass lost moderately increases with increasing metallicity, and for a given metallicity is systematically higher in clusters with extended blue HB.
Resumo:
Observers have found a small number of lithium-depleted halo stars in the temperature range of the Spite plateau. The current status of the mass-loss hypothesis for producing the observed lithium dip in Population (Pop) I stars is briefly discussed and extended to Pop II stars as a possible explanation for these halo objects. Based on detections of F-type main-sequence variables, mass loss is assumed to occur in a narrow temperature region corresponding to this “instability strip.” As Pop II main-sequence stars evolve to the blue, they enter this narrow temperature region, then move back through the lower temperature area of the Spite plateau. If 0.05 M⊙ (solar mass) or more have been lost, they will show lithium depletion. This hypothesis affects the lithium-to- beryllium abundance, the ratio of high- to low-lithium stars, and the luminosity function. Constraints on the mass-loss hypothesis due to these effects are discussed. Finally, mass loss in this temperature range would operate in stars near the turnoff of metal-poor globular clusters, resulting in apparent ages 2 to 3 Gyr (gigayears) older than they actually are.
Resumo:
Oxygen abundances of 67 dwarf stars in the metallicity range -1.6 < [Fe/H] < -0.4 are derived from a non-LTE analysis of the 777 nm O I triplet lines. These stars have precise atmospheric parameters measured by Nissen and Schuster, who find that they separate into three groups based on their kinematics and alpha-element (Mg, Si, Ca, Ti) abundances: thick disk, high-alpha halo, and low-alpha halo. We find the oxygen abundance trends of thick-disk and high-alpha halo stars very similar. The low-alpha stars show a larger star-to-star scatter in [O/Fe] at a given [Fe/H] and have systematically lower oxygen abundances compared to the other two groups. Thus, we find the behavior of oxygen abundances in these groups of stars similar to that of the a elements. We use previously published oxygen abundance data of disk and very metal-poor halo stars to present an overall view (-2.3 < [Fe/H] < +0.3) of oxygen abundance trends of stars in the solar neighborhood. Two field halo dwarf stars stand out in their O and Na abundances. Both G53-41 and G150-40 have very low oxygen and very high sodium abundances, which are key signatures of the abundance anomalies observed in globular cluster (GC) stars. Therefore, they are likely field halo stars born in GCs. If true, we estimate that at least 3% +/- 2% of the local field metal-poor star population was born in GCs.
Resumo:
We employ the recently installed near-infrared Multi-Conjugate Adaptive Optics demonstrator (MAD) to determine the basic properties of a newly identified, old and distant, Galactic open cluster (FSR 1415). The MAD facility remarkably approaches the diffraction limit, reaching a resolution of 0.07 arcsec (in K), that is also uniform in a field of similar to 1.8 arcmin in diameter. The MAD facility provides photometry that is 50 per cent complete at K similar to 19. This corresponds to about 2.5 mag below the cluster main-sequence turn-off. This high-quality data set allows us to derive an accurate heliocentric distance of 8.6 kpc, a metallicity close to solar and an age of similar to 2.5 Gyr. On the other hand, the deepness of the data allows us to reconstruct (completeness-corrected) mass functions (MFs) indicating a relatively massive cluster, with a flat core MF. The Very Large Telescope/MAD capabilities will therefore provide fundamental data for identifying/analysing other faint and distant open clusters in the Galaxy III and IV quadrants.
Resumo:
Halo white dwarfs remain one of the least studied stellar populations in the Milky Way because of their faint luminosities. Recent work has uncovered a population of hot white dwarfs which are thought to be remnants of low-mass Population II stars. This thesis uses optical data from the Next Generation Virgo Cluster Survey (NGVS) and ultravoilet data from the GALEX Ultraviolet Virgo Cluster Survey (GUViCS) to select candidates which may belong to this population of recently formed halo white dwarfs. A colour selection was used to separate white dwarfs from QSOs and main-sequence stars. Photometric distances are calculated using model colour-absolute magnitude relations. Proper motions are calculated by using the difference in positions between objects from the Sloan Digital Sky Survey and the NGVS. The proper motions are combined with the calculated photometric distances to calculate tangential velocities, as well as approximate Galactic space velocities. White dwarf candidates are characterized as belonging to either the disk or the halo using a variety of methods, including calculated scale heights (z> 1 kpc), tangential velocities (vt >200 km/s), and their location in (V,U) space. The 20 halo white dwarf candidates which were selected using Galactic space velocities are analyzed, and their colours and temperatures suggest that these objects represent some of the youngest white dwarfs in the Galactic halo.
Resumo:
We present a model-atmosphere analysis for the bright (V similar to 13) star ZNG-1, in the globular cluster M10. From high-resolution (R similar to 40 000) optical spectra we confirm ZNG-1 to be a post-asymptotic giant branch (post-AGB) star. The derived atmospheric parameters are T-eff = 26 500 +/- 1000 K and log g = 3.6 +/- 0.2 dex. A differential abundance analysis reveals a chemical composition typical of hot post-AGB objects, with ZNG-1 being generally metal poor, although helium is approximately solar. The most interesting feature is the large carbon underabundance of more than 1.3 dex. This carbon deficiency, along with an observed nitrogen enhancement relative to other elements, may suggest that ZNG-1 evolved off the AGB before the third dredge-up occurred. Also, iron depletions observed in other similar stars suggest that gas- dust fractionation in the AGB progenitor could be responsible for the observed composition of these objects. However, we need not invoke either scenario since the chemical composition of ZNG-1 is in good agreement with abundances found for a Population II star of the same metallicity.
Resumo:
Cette thèse a été réalisée en cotutelle. Pour la forme, Gérard Jasniewicz était mon codirecteur 'officiel' en France, bien que mon codirecteur était plutôt Olivier Richard qui m'a encadré lorsque j'étais en France.
Resumo:
1. Nutrient concentrations (particularly N and P) determine the extent to which water bodies are or may become eutrophic. Direct determination of nutrient content on a wide scale is labour intensive but the main sources of N and P are well known. This paper describes and tests an export coefficient model for prediction of total N and total P from: (i) land use, stock headage and human population; (ii) the export rates of N and P from these sources; and (iii) the river discharge. Such a model might be used to forecast the effects of changes in land use in the future and to hindcast past water quality to establish comparative or baseline states for the monitoring of change. 2. The model has been calibrated against observed data for 1988 and validated against sets of observed data for a sequence of earlier years in ten British catchments varying from uplands through rolling, fertile lowlands to the flat topography of East Anglia. 3. The model predicted total N and total P concentrations with high precision (95% of the variance in observed data explained). It has been used in two forms: the first on a specific catchment basis; the second for a larger natural region which contains the catchment with the assumption that all catchments within that region will be similar. Both models gave similar results with little loss of precision in the latter case. This implies that it will be possible to describe the overall pattern of nutrient export in the UK with only a fraction of the effort needed to carry out the calculations for each individual water body. 4. Comparison between land use, stock headage, population numbers and nutrient export for the ten catchments in the pre-war year of 1931, and for 1970 and 1988 show that there has been a substantial loss of rough grazing to fertilized temporary and permanent grasslands, an increase in the hectarage devoted to arable, consistent increases in the stocking of cattle and sheep and a marked movement of humans to these rural catchments. 5. All of these trends have increased the flows of nutrients with more than a doubling of both total N and total P loads during the period. On average in these rural catchments, stock wastes have been the greatest contributors to both N and P exports, with cultivation the next most important source of N and people of P. Ratios of N to P were high in 1931 and remain little changed so that, in these catchments, phosphorus continues to be the nutrient most likely to control algal crops in standing waters supplied by the rivers studied.
Resumo:
Aims. We construct a theoretical model to predict the number of orphan afterglows (OA) from gamma-ray bursts (GRBs) triggered by primordial metal-free (Pop III) stars expected to be observed by the Gaia mission. In particular, we consider primordial metal-free stars that were affected by radiation from other stars (Pop III. 2) as a possible target. Methods. We use a semi-analytical approach that includes all relevant feedback effects to construct cosmic star formation history and its connection with the cumulative number of GRBs. The OA events are generated using the Monte Carlo method, and realistic simulations of Gaia's scanning law are performed to derive the observation probability expectation. Results. We show that Gaia can observe up to 2.28 +/- 0.88 off-axis afterglows and 2.78 +/- 1.41 on-axis during the five-year nominal mission. This implies that a nonnegligible percentage of afterglows that may be observed by Gaia (similar to 10%) could have Pop III stars as progenitors.
Resumo:
Our view of Globular Clusters has deeply changed in the last decade. Modern spectroscopic and photometric data have conclusively established that globulars are neither coeval nor monometallic, reopening the issue of the formation of such systems. Their formation is now schematized as a two-step process, during which the polluted matter from the more massive stars of a first generation gives birth, in the cluster innermost regions, to a second generation of stars with the characteristic signature of fully CNO-processed matter. To date, star-to-star variations in abundances of the light elements (C, N, O, Na) have been observed in stars of all evolutionary phases in all properly studied Galactic globular clusters. Multiple or broad evolutionary sequences have also been observed in nearly all the clusters that have been observed with good signal-to-noise in the appropriate photometric bands. The body of evidence suggests that spreads in light-element abundances can be fairly well traced by photometric indices including near ultraviolet passbands, as CNO abundance variations affect mainly wavelengths shorter than ~400 nm owing to the rise of some NH and CN molecular absorption bands. Here, we exploit this property of near ultraviolet photometry to trace internal chemical variations and combined it with low resolution spectroscopy aimed to derive carbon and nitrogen abundances in order to maximize the information on the multiple populations. This approach has been proven to be very effective in (i) detecting multiple population, (ii) characterizing their global properties (i.e., relative fraction of stars, location in the color-magnitude diagram, spatial distribution, and trends with cluster parameters) and (iii) precisely tagging their chemical properties (i.e., extension of the C-N anticorrelation, bimodalities in the N content).
Resumo:
海拔梯度造成的环境异质性,如崎岖的地形、复杂的植被结构以及花期延迟等可能会极大地影响到物种的形态和遗传变异格局。理解物种形态和遗传变异的海拔格局对于物种多样性的管理和保护是非常重要的。尽管植物群体遗传学是一个飞速发展的研究领域,然而与海拔相关的形态变异、遗传变异及群体间遗传差异的研究却很少。到目前为止,还不清楚遗传变异与海拔之间是否必然的相关性。 川滇高山栎是一种重要的生态和经济型树种,广泛分布于中国西南的四川、西藏、贵州和云南省的高海拔地区,在保持水土、调节气候方面起着十分重要的作用。尽管主要受阳光限制而仅分布于阳坡,但其海拔梯度范围较大,表明川滇高山栎对不同的环境具有很强的适应性。本文通过叶型及生理响应、微卫星分子标记和扩增性片段长度多态性方法,试图探索川滇高山栎叶沿海拔梯度的形态和生理响应及其沿海拔梯度的遗传变异格局,为川滇高山栎的保护和利用提供进一步的遗传学理论依据和技术指导。 对叶形、含氮量及碳同位素的试验结果表明,平均比叶面积、气孔密度、气孔长度和气孔指数等气孔参数随海拔的升高呈非线性变化。在海拔大于2800 m时,川滇高山栎的比叶面积、气孔长度和气孔指数都随海拔升高而降低,但是在海拔小于2800 m时,这些指标都随海拔的升高而增大。相对而言,单位叶面积的含氮量和碳同位素则表现出相反的变化模式。另外,比叶面积是决定碳同位素沿海拔梯度变化的最重要参数。本研究结果表明,海拔2800 m附近是川滇高山栎生长和发育的最适地带,在这里生长的植物叶片厚度更薄、气孔更大、叶碳同位素值更小。 利用六对微卫星引物对五个不同海拔川滇高山栎群体遗传多样性进行研究,结果表明,群体内表现出较高的遗传多样性,平均每位点等位基因数11.33个,平均期望杂合度达0.820。群体间差异较小,分化仅为6.6%。聚类分析也并没有显示出明显的海拔格局。然而低频率等位基因却与海拔呈显著性正相关(R2=0.97, P < 0.01),表明在高海拔处,川滇高山栎以更多的稀有基因来适应恶劣的环境条件。本试验结果表明由海拔梯度形成的选择性压力对川滇高山栎群体的遗传变异影响并不明显。 为了进一步探讨川滇高山栎群体遗传变异与海拔之间的相互关系,我们还对其进行了扩增性片段长度多态性分析。结果表明:(1)随海拔的升高(从群体WL2到群体WL5),群体内遗传变异降低,而群体间遗传差异增加;(2)低海拔群体WL1表现出最低的遗传变异性(HE = 0.181),同时与其余四个群体间呈现出最大的遗传差异性(平均FST = 0.0596);(3)在除去低海拔群体WL1后,Mantel检测表明群体间遗传距离与海拔距离之间表现出正相关性。另外,研究结果还表明,遗传变异受生境条件(过度的湿热环境)及人为干扰(火烧、砍伐和放牧)的影响,这一点至少在低海拔群体WL1上发生了作用。 通过叶形态、生理及DNA分子水平的研究,结果表明叶形态特征和碳同位素与海拔紧密相关,与海拔之间呈非线性变化,海拔2,800 m附近是川滇高山栎生长和发育的最适地带。海拔梯度在一定程度上会影响到川滇高山栎群体的遗传变异结构,但在这样一个狭窄的地理分布区域里,这种影响并不足以导致群体间较大的遗传分化。同时生境条件及人为干扰也是影响遗传变异的限制性因子,不容忽视。 Altitudinal gradients impose heterogeneous environmental conditions, such as rugged topography, a complex pattern of vegetation and flowering delay, and they likely furthermore markedly affect the morphological and genetic variation pattern of a species. Understanding altitudinal pattern of morphological and genetic variation at a species is important for the management and conservation of species diversity. Although plant population genetics is a fast growing field of research, there are only few recent investigations, which analyzed the genetic differentiation and changes of intra-population variation along altitudinal gradients. At present, it is still unclear whether there are some common patterns of morphological and genetic variation with altitude. Quercus aquifolioides Rehder & E.H. Wilson, which is an important ecological and economical endemic woody plant species, is widely distributed in the Yunnan and Sichuan provinces, Southwest China. Its large range of habitat across different altitudes implies strong adaptation to different environments, although it is mainly restricted to sunny, south facing slopes. It plays a very important role in preventing soil erosion, soil water loss and regulating climate, as well as in retaining ecological stability. In this paper, we tried to understand the altitudinal pattern of morphological and genetic variation along altitudinal gradients through the experiments of leaf morphological and physiological responses, microsatellite analysis and AFLP markers. In leaf morphological and physiological responses experiment, we measured leaf morphology, nitrogen content and carbon isotope composition (as an indicator of water use efficiency) of Q. aquifolioides along an altitudinal gradient. We found that these leaf morphological and physiological responses to altitudinal gradients were non-linear with increasing altitude. Specific leaf area, stomatal length and index increased with increasing altitude below 2,800 m, but decreased with increasing altitude above 2,800 m. In contrast, leaf nitrogen content per unit area and carbon isotope composition showed opposite change patterns. Specific leaf area seemed to be the most important parameter that determined the carbon isotope composition along the altitudinal gradient. Our results suggest that near 2,800 m in altitude could be the optimum zone for growth and development of Q. aquifolioides, and highlight the importance of the influence of altitude in research on plant physiological ecology. Genetic variation and differentiation were investigated among five natural populations of Q. aquifolioides occurring along an altitudinal gradient that varied from 2,000 to 3,600 m above sea level in the Wolong Natural Reserve of China, by analyzing variation at six microsatellite loci. The results showed that the populations were characterized by relatively high intra-population variation with the average number of alleles equaling 11.33 per locus and the average expected heterozygosity (HE) being 0.779. The amount of genetic variation varied only little among populations, which suggests that the influence of altitude factors on microsatellite variation is limited. However, there is a significantly positive correlation between altitude and the number of low-frequency alleles (R2=0.97, P < 0.01), which indicates that Q. aquifolioides from high altitudes has more unique variation, possibly enabling adaptation to severe conditions. F statistics showed the presence of a slight deficiency of heterozygosity (FIS=0.136) and a low level of differentiation among populations (FST=0.066). The result of the cluster analysis demonstrates that the grouping of populations does not correspond to the altitude of the populations. Based on the available data, it is likely that the selective forces related to altitude are not strong enough to significantly differentiate the populations of Q. aquifolioides in terms of microsatellite variation. To further elucidate genetic variation pattern of Q. aquifolioides populations under sub-alpine environments, genetic variation and differentiation were investigated along altitudinal gradients using AFLP markers. The altitudinal populations with an average altitude interval of 400 m, i.e. WL1, WL2, WL3, WL4 and WL5, correspond to the altitudes 2,000, 2,400, 2,800, 3,200 and 3,600 m, respectively. Our results were as follows: (i) decreasing genetic variation (ranging from 0.253 to 0.210) and increasing genetic differentiation with altitude were obtained from the WL2 to the WL5 population; (ii) the WL1 population showed the lowest genetic variation (HE = 0.181) and the highest genetic differentiation (average FST = 0.0596) with the other four populations; (iii) the positive correlation was obtained using Mantel tests between genetic and altitude distances except for the WL1 population. Our results suggest that altitudinal gradients may have influenced the genetic variation pattern of Q. aquifolioides populations to some extent. In addition, habitat environments (unfavorable wet and hot conditions) and human disturbances (burning, grazing and felling) were possible influencing factors, especially to the low-altitude WL1 population. The present study shows that there were close correlations between morphological features and carbon isotope composition in our data. This indicates that a coordinated plant response modified these parameters simultaneously across different altitudes. Around 2,800 m altitude there seems to be an optimum zone for growth and development of Q. aquifolioides, as indicated by thinner leaves, larger stomata and more negative d13C values. All available evidence indicates altitudinal gradients may have influenced the genetic variation pattern of Q. aquifolioides to some extent. Decreasing genetic variation and increasing genetic differentiation with altitude was obtained except for the WL1 population. And the environment of habitats and human disturbances were also contributing factors, which impact genetic variation pattern, especially to the low-altitude WL1 population.
Resumo:
Interpretation biases towards threat play a prominent role in cognitive theories of anxiety, and have been identified amongst highly anxious adults and children. Little is known, however, about the development of these cognitive biases although family processes have been implicated. The current study investigated the nature of threat interpretation of anxious children and their mothers through (i) comparison of a clinic and non-clinic population, (ii) analysis of individual differences; and (ill) pre- and post-treatment comparisons. Participants were 27 children with a primary anxiety disorder and 33 children from a non-clinic population and their mothers. Children and mothers completed self-report measures of anxiety and indicated their most likely interpretation of ambiguous scenarios. Clinic and non-clinical groups differed significantly on measures of threat interpretation. Furthermore, mothers' and children's threat interpretation correlated significantly. Following treatment for child anxiety, both children and their mothers reported a reduction in threat interpretation. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We examine the flaring behaviour of the cataclysmic variable AE Aqr in the context of the `magnetic propeller' model for this system. The flares are thought to arise from collisions between high-density regions in the material expelled from the system after interaction with the rapidly rotating magnetosphere of the white dwarf. We calculate the first quantitative models for the flaring and calculate the time-dependent emergent optical spectra from the resulting hot, expanding ball of gas. We compare the results under different assumptions to observations and derive values for the mass, length-scale and temperature of the material involved in the flare. We see that the fits suggest that the secondary star in this system has Population II composition.
Resumo:
Laser-assisted hatching is little documented in the literature regarding its efficacy in cryopreserved-thawed (CT) embryo transfer cycles. The aim of the present study was to evaluate in a randomized manner the efficacy of thinning one quarter of the zona pellucida of CT embryos to a depth of 50-80% of the original thickness, via laser treatment (the qLZT-AH procedure), in improving implantation and pregnancy rates. Two populations were studied: population I, patients who had all their supernumerary embryos cryopreserved, regardless of their morphology, and population II, patients at risk of ovarian hyperstimulation syndrome who had all their embryos cryopreserved. Artificial and natural protocols were used for the embryo transfers. A total of 350 laser-thinned CT embryos were compared with 352 intact zona embryos. No difference in implantation or pregnancy rate was found after using qLZT-AH in either population. These findings suggest that qLZT-AH should not be routinely performed in cryopreserved embryo programmes.