951 resultados para SSU rRNA
Resumo:
There has been much argument about the phylogenetic relationships of the four suborders of lice (Insecta: Phthiraptera). Lyal's study of the morphology of lice indicated that chewing/biting lice (Mallophaga) are paraphyletic with respect to sucking lice (Anoplura). To test this hypothesis we inferred the phylogeny of 33 species of lice from small subunit (SSU) rRNA sequences (18S rRNA). Liposcelis sp. from the Liposcelididae (Psocoptera) was used for outgroup reference. Phylogenetic relationships among the four suborders of lice inferred from these sequences were the same as those inferred from morphology. The Amblycera is apparently the sister-group to all other lice whereas the Rhynchophthirina is apparently sister to the Anoplura; these two suborders are sister to the Ischnocera, i.e. (Amblycera (Ischnocera (Anoplura, Rhynchophthirina))). Thus, the Mallophaga (Amblycera, Ischnocera, Rhynchophthirina) is apparently paraphyletic with respect to the Anoplura. Our analyses also provide evidence that: (i) each of the three suborders of lice that are well represented in our study (the Amblycera, Ischnocera, and Anoplura) are monophyletic; (ii) the Boopiidae is monophyletic; (iii) the genera Heterodoxus and Latumcephalum (Boopiidae) are more closely related to one another than either is to the genus Boopia (also Boopiidae); (iv) the Ricinidae and Laemobothridae may be sister-taxa; (v) the Philopteridae may be paraphyletic with respect to the Trichodectidae; (vi) the genera Pediculus and Pthirus are more closely related to each other than either is to the genus Pedicinus ; and (vii) in contrast to published data for mitochondrial genes, the rates of nucleotide substitution in the SSU rRNA of lice are not higher than those of other insects, nor do substitution rates in the suborders differ substantially from one another.
Resumo:
We sequenced the small subunit (SSU) rRNA and glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) genes of two trypanosomes isolated from the Brazilian snakes Pseudoboa nigra and Crotalus durissus terrificus. Trypanosomes were cultured and their morphometrical and ultrastructural features were characterized by light microscopy and scanning and transmission electron microscopy. Phylogenetic trees inferred using independent or combined SSU rRNA and gGAPDH data sets always clustered the snake trypanosomes together in a clade closest to lizard trypanosomes, forming a strongly supported monophyletic assemblage (i.e. lizard-snake clade). The positioning in the phylogenetic trees and the barcoding based on the variable V7-V8 region of the SSU rRNA, which showed high sequence divergences, allowed us to classify the isolates from distinct snake species as separate species. The isolate from P. nigra is described as a new species, Trypanosoma serpentis n. sp., whereas the isolate from C. d. terrificus is redescribed here as Trypanosoma cascavelli.
Resumo:
We inferred phylogeny among the three major lineages of the Acari ( mites) from the small subunit rRNA gene. Our phylogeny indicates that the Opilioacariformes is the sister-group to the Ixodida+Holothyrida, not the Ixodida+Mesostigmata+Holothyrida, as previously thought. Support for this relationship increased when sites with the highest rates of nucleotide substitution, and thus the greatest potential for saturation with nucleotide substitutions, were removed. Indeed, the increase in support ( and resolution) was despite a 70% reduction in the number of parsimony-informative sites from 408 to 115. This shows that rather than 'noisy' sites having no impact on resolution of deep branches, 'noisy' sites have the potential to obscure phylogenetic relationships. The arrangement, Ixodida+Holothyrida+Opilioacariformes, however, may be an artefact of long-branch attraction since relative-rate tests showed that the Mesostigmata have significantly faster rates of nucleotide substitution than other parasitiform mites. Thus, the fast rates of nucleotide substitution of the Mesostigmata might have caused the Mesostigmata to be attracted to the outgroup in our trees. We tested the hypothesis that the high rate of nucleotide substitution in some mites was related to their short generation times. The Acari species that have high nucleotide substitution rates usually have short generation times; these mites also tend to be more active and thus have higher metabolic rates than other mites. Therefore, more than one factor may affect the rate of nucleotide substitution in these mites.
Resumo:
The aim of this study was to assess the occurrence of Cryptosporidium in domestic animals in rural properties surrounding rain forest fragments within the municipality of Teodoro Sampaio, southeastern Brazil. Conventional sucrose flotation method followed by molecular characterization of the parasites by sequencing PCR products amplified from SSU rRNA gene were used. Stool samples were collected from domestic animals raised as pets and livestock in all rural properties surrounding three forest fragments. Samples from cattle (197), equine (63), pigs (25), sheep (11), and dogs (28) were collected from 98 rural properties. The frequency of occurrence of Cryptosporidium within each animal species was 3.0% (6/197) among cattle and 10.7% (3/28) among dogs. Cryptosporidium was not detected in stool samples from equine, sheep, and pigs. All sequences obtained from the six samples of calves showed molecular identity with Cryptosporidium andersoni while all sequences from dog samples were similar to C. canis. The frequency of occurrence of Cryptosporidium in these domestic animal species was low. The absence of C. parvum in the present study suggests that the zoonotic cycle of cryptosporidiosis may not be relevant in the region studied. The presence of Cryptosporidium species seldom described in humans may be, otherwise, important for the wild fauna as these animals are a source of infection and dissemination of this protozoan to other animal species. The impact and magnitude of infection by C. andersoni in wild ruminants and C. canis in wild canids have to be assessed in future studies to better understand the actual importance of these species in this region.
Resumo:
We have studied the variability of glutamate dehydrogenase (gdh) and small subunit ribosomal (SSU) rRNA coding genes of Giardia species in fecal samples isolated from wild and exotic animals in Brazil, and compared with homologous sequences of isolates from human and domestic animals characterized in previous studies. Cysts of Giardia duodenalis were obtained from feces of naturally infected monkeys (Alouatta fusca) (n = 20), chinchillas (Chinchilla lanigera) (n = 3), ostriches (Struthio camelus) (n = 2) and jaguar (Panthera onca) (n = 1). Assemblage AI was assigned to the unique isolate of jaguar. All the samples from monkeys, chinchillas, and ostriches were assigned to Assemblage B. There was little evolutionary divergence between the referred isolates and isolates described elsewhere. The Assemblage B isolates identified in this study were closely related to Assemblage BIV isolated from humans. The molecular identification of Assemblages A and B of G. duodenalis isolates from exotic and wild animals demonstrates that such hosts may be a potential reservoir for zoonotic transmission of G. duodenalis. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The recent discovery of isotrichid-like ciliates occurring as endosymbionts in macropodid marsupials posed interesting questions in regard to both their phyletic origin (all previous records confined to eutherian mammals) and their morphological evolution (Australian forms possibly representing missing links between previously described genera). The SSU rRNA gene was sequenced for three species (Dasytricha dehorityi, D. dogieli, and Batricha tasmaniensis) and aligned against representatives of all major ciliate classes. The Australian species did not group with the other isotrichid species but instead formed an independent radiation. Discrepancies between recent global phylogenies of the phylum Ciliophora were examined by manipulation of the aligned sequence data set. Sources of conflict between these studies did not stem from differences in outgroup choice or phylogenetic reconstruction methods. Differences in the application of confidence limits and primary sequence alignment have probably resulted in the reporting of spurious associations which are not supported by more conservative confidence or alignment methodology. At present, the ciliate subphylum Intramacro-nucleata is an unresolved polytomy which may be due to deficiencies in the SSU rRNA gene sequence dataset or indicate that the ciliates radiated into their extant classes by rapid burst-like evolution. (C) 2001 academic Press.
Resumo:
A 12-day-old nestling Gouldian finch (Erythrura [Chloebia] gouldiae) was presented for investigation of a mortality problem in nestling finches raised by Bengalese finch foster parents. On histological examination, large numbers of spores consistent with a microsporidian organism were present within the small intestinal mucosa. Electron microscopy and molecular studies (sequencing the 5' end of the ssu rRNA gene) further defined the organism as Encephalitozoon hellem. Sequence homology with other eukaryotes was determined using a BLASTN search from the NCBI GenBank database. The finch isolate sequences showed greater than 99% homology with those of previously reported human and avian isolates.
Resumo:
The Entodiniomorphida are a diverse and morphologically complex group of ciliates which are symbiotic within the digestive tracts of herbivorous mammals. Previous phylogenies of the group have exclusively considered members of one family, the Ophryoscolecidae, which are symbiotic within ruminants. We sought to improve understanding of evolution within the entodiniomorphs by expanding the range of ciliates examined to include the Cycloposthiidae and Macropodimidae (symbionts of equids and macropodids respectively). The entire SSU-rRNA gene was sequenced for 3 species, Cycloposthium edentatum, Macropodinium ennuensis and M. yalanbense, and aligned against 14 litostome species and 2 postciliodesmatophoran outgroup species. Cycloposthium was consistently grouped as the sister-taxon to the Ophryoscolecidae although support for this relationship was low. This suggests that there is more evolutionary distance between the Cycloposthiidae and Ophryoscolecidae than previously inferred from studies of gross morphology, cell ontogeny or ultrastructure. In contrast, Macropodinium did not group with any of the entodiniomorphs, instead forming the sister group to the entire Trichostomatia (Entodiniomorphida + Vestibuliferida). This early diverging position for the macropodiniids is concordant with their morphology and ontogeny which failed to group the family with any of the entodiniomorph suborders. The currently accepted classification of the Trichostomatia is thus deficient and in need of review.
Resumo:
As leishmanioses são um grupo de doenças causadas pelo parasita protozoário Leishmania sp. Na Bacia mediterrânica, Leishmania infantum, é a principal espécie causadora de leishmaniose visceral, a forma mais severa da doença, sendo L. major um dos agentes etiológicos da leishmaniose cutânea. Apesar de se considerar que estes parasitas têm uma reprodução essencialmente clonal, nos últimos 20 anos tem vindo a ser descrita a recombinação genética entre diferentes estirpes e espécies, com ocorrência de híbridos naturais, quer no Velho quer no Novo Mundo. Recentemente, em Portugal, foram isoladas e identificadas pela primeira vez, estirpes híbridas de L. infantum/L. major. O presente estudo teve como principais objetivos, a pesquisa de “novas espécies” de Leishmania e a análise do comportamento “in vitro” de estirpes parentais e híbridas de L. infantum e L. major. Numa primeira parte do trabalho efetuou-se a cultura e pesquisa de DNA de Leishmania sp., em amostras de sangue medular de 229 cães provenientes de uma região endémica de Portugal, utilizando diferentes marcadores moleculares (kDNA, ITS1 e SSU rRNA) e protocolos de PCR. Não foi encontrado DNA de espécies híbridas, tendo-se no entanto, identificado DNA de Leishmania sp. em 45,85% (105/229) das amostras, incluindo cães sem sinais clínicos. Na segunda parte do trabalho, realizaram-se diversos ensaios “in vitro” com estirpes híbridas naturais L. infantum/L. major e parentais L. infantum e L. major. Em condições normais de crescimento, observou-se um padrão de crescimento distinto para cada estirpe estudada. Em condições de “stress” oxidativo, destacou-se uma diferença significativa entre as duas estirpes híbridas estudadas. Em condições de “stress” nutricional, as estirpes não apresentaram diferenças entre si. Após avaliação da suscetibilidade das estirpes na presença de Anfotericina B, todas se mostraram suscetíveis, com concentrações inibitórias (CI50) entre 0.21 e 1.15 μg/mL. Após infeção em linhas celulares monocíticas, não se verificaram diferenças estatisticamente significativas na taxa e intensidade de infeção das estirpes híbridas em comparação às putativas parentais. Os resultados obtidos, contribuíram para um melhor conhecimento sobre o comportamento biológico destas estirpes híbridas naturais L. infantum/L. major. Estas demonstraram um comportamento “in vitro” intermédio, relativamente às estirpes parentais. Estes resultados poderão servir de base para o desenvolvimento de outros estudos com estas “novas espécies”, nomeadamente estudos de patogenicidade “in vivo” e o papel de biomarcadores de virulência, que permitam um potencial prognóstico da infeção e avaliação do seu risco epidemiológico.
Resumo:
Cryptosporidiosis has recently attracted attention as an emerging waterborne and foodborne disease as well as an opportunistic infection in HIV infected individuals. The lack of genetic information, however, has resulted in confusion in the taxonomy of Cryptosporidium parasites and in the development of molecular tools for the identification and typing of oocysts in environmental samples. Phylogenetic analysis of the small subunit ribosomal RNA (SSU rRNA) gene has shown that the genus Cryptosporidium is comprised of several distinct species. Our data show the presence of at least four species: C. parvum, C. muris, C. baileyi and C. serpentis (C. meleagridis, C. nasorum and C. felis were not studied). Within each species, there is some sequence variation. Thus, various genotypes (genotype 1, genotype 2, guinea pig genotype, monkey genotype and koala genotype, etc.) of C. parvum differ from each other in six regions of the SSU rRNA gene. Information on polymorphism in Cryptosporidium parasites has been used in the development of species and strain-specific diagnostic tools. Use of these tools in the characterization of oocysts various samples indicates that C. parvum genotype 1 is the strain responsible for most human Cryptosporidium infections. In contrast, genotype 2 is probably the major source for environmental contamination of environment, and has been found in most oysters examined from Chesapeake Bay that serve as biologic monitors of surface water. Parasites of Cryptosporidium species other than C. parvum have not been detected in HIV+ individuals, indicating that the disease in humans is caused only by C. parvum.
Resumo:
This report describes the development of a SYBR Green I based real time polymerase chain reaction (PCR) protocol for detection on the ABI Prism 7000 instrument. Primers targeting the gene encoding the SSU rRNA were designed to amplify with high specificity DNA from Schistosoma mansoni, in a real time quantitative PCR system. The limit of detection of parasite DNA for the system was 10 fg of purified genomic DNA, that means less than the equivalent to one parasite cell (genome ~580 fg DNA). The efficiency was 0.99 and the correlation coefficient (R²) was 0.97. When different copy numbers of the target amplicon were used as standards, the assay could detect at least 10 copies of the specific target. The primers used were designed to amplify a 106 bp DNA fragment (Tm 83ºC). The assay was highly specific for S. mansoni, and did not recognize DNA from closely related non-schistosome trematodes. The real time PCR allowed for accurate quantification of S. mansoni DNA and no time-consuming post-PCR detection of amplification products by gel electrophoresis was required. The assay is potentially able to quantify S. mansoni DNA (and indirectly parasite burden) in a number of samples, such as snail tissue, serum and feces from patients, and cercaria infested water. Thus, these PCR protocols have potential to be used as tools for monitoring of schistosome transmission and quantitative diagnosis of human infection.
Resumo:
A new trypanosomatid species, Blastocrithidia cyrtomeni, is herein described using morphological and molecular data. It was found parasitising the alimentary tract of the insect host Cyrtomenus bergi, a polyphagous pest. The morphology of B. cyrtomeni was investigated using light and transmission microscopy and molecular phylogeny was inferred from the sequences of spliced leader RNA (SL rRNA) - 5S rRNA gene repeats and the 18S small subunit (SSU) rRNA gene. Epimastigotes of variable size with straphanger cysts adhering to the middle of the flagellum were observed in the intestinal tract, hemolymph and Malpighian tubules. Kinetoplasts were always observed anterior to the nucleus. The ultrastructure of longitudinal sections of epimastigotes showed the flagellum arising laterally from a relatively shallow flagellar pocket near the kinetoplast. SL RNA and 5S rRNA gene repeats were positive in all cases, producing a 0.8-kb band. The amplicons were 797-803 bp long with > 98.5% identity, indicating that they originated from the same organism. According to the sequence analysis of the SL-5S rRNA gene repeats and the 18S SSU rRNA gene, B. cyrtomeni is different from all other known species or isolates of Trypanosomatidae. Both analyses indicate that among known species, it is most closely related to Blastocrithidia triatomae.
Resumo:
The aim of the present study was to detect natural infection by Leishmania (Leishmania) infantum in Lutzomyia longipalpis captured in Barcarena, state of Pará, Brazil, through the use of three primer sets. With this approach, it is unnecessary to previously dissect the sandfly specimens. DNA of 280 Lu. longipalpis female specimens were extracted from the whole insects. PCR primers for kinetoplast minicircle DNA (kDNA), the mini-exon gene and the small subunit ribosomal RNA (SSU-rRNA) gene of Leishmania were used, generating fragments of 400 bp, 780 bp and 603 bp, respectively. Infection by the parasite was found with the kDNA primer in 8.6% of the cases, with the mini-exon gene primer in 7.1% of the cases and with the SSU-rRNA gene primer in 5.3% of the cases. These data show the importance of polymerase chain reaction as a tool for investigating the molecular epidemiology of visceral leishmaniasis by estimating the risk of disease transmission in endemic areas, with the kDNA primer representing the most reliable marker for the parasite.
Resumo:
Using PCR-based assays with specific primers for amplification of the ribosomal DNA intergenic spacer region (IGS) and a portion of the mitochondrial DNA small subunit ribosomal RNA gene (mtDNA SSU rRNA), the genetic variability among Verticillium dahliae isolates from olive (Olea europaea) and other host species from Argentina and Brazil was estimated. The derived UPGMA-generated phenograms based upon the restriction fingerprinting data of rDNA IGS products revealed genetic differences, correlating with the host of origin. Isolates infecting olive genetically distinct from those from cocoa (Theobroma cacao) and sunflower (Helianthus annuus). Digestion of mitochondrial DNA SSU rRNA PCR products revealed less variability, distinguishing only one isolate from sunflower. Ribosomal DNA ITS restriction patterns were identical for all isolates of V. dahliae, irrespective of host of origin. These preliminary results may have relevance for Verticillium wilt control practices, possibly reflecting a different evolutionary origin, or reproductive isolation of the pathogen in olive, distinct from populations of other hosts.
Resumo:
Background: Multi-drug resistance and severe/ complicated cases are the emerging phenotypes of vivax malaria, which may deteriorate current anti-malarial control measures. The emergence of these phenotypes could be associated with either of the two Plasmodium vivax lineages. The two lineages had been categorized as Old World and New World, based on geographical sub-division and genetic and phenotypical markers. This study revisited the lineage hypothesis of P. vivax by typing the distribution of lineages among global isolates and evaluated their genetic relatedness using a panel of new mini-satellite markers. Methods: 18S SSU rRNA S-type gene was amplified from 420 Plasmodium vivax field isolates collected from different geographical regions of India, Thailand and Colombia as well as four strains each of P. vivax originating from Nicaragua, Panama, Thailand (Pak Chang), and Vietnam (ONG). A mini-satellite marker panel was then developed to understand the population genetic parameters and tested on a sample subset of both lineages. Results: 18S SSU rRNA S-type gene typing revealed the distribution of both lineages (Old World and New World) in all geographical regions. However, distribution of Plasmodium vivax lineages was highly variable in every geographical region. The lack of geographical sub-division between lineages suggests that both lineages are globally distributed. Ten mini-satellites were scanned from the P. vivax genome sequence; these tandem repeats were located in eight of the chromosomes. Mini-satellites revealed substantial allelic diversity (7-21, AE = 14.6 +/- 2.0) and heterozygosity (He = 0.697-0.924, AE = 0.857 +/- 0.033) per locus. Mini-satellite comparison between the two lineages revealed high but similar pattern of genetic diversity, allele frequency, and high degree of allele sharing. A Neighbour-Joining phylogenetic tree derived from genetic distance data obtained from ten mini-satellites also placed both lineages together in every cluster. Conclusions: The global lineage distribution, lack of genetic distance, similar pattern of genetic diversity, and allele sharing strongly suggested that both lineages are a single species and thus new emerging phenotypes associated with vivax malaria could not be clearly classified as belonging to a particular lineage on basis of their geographical origin.