982 resultados para SOUTHERN-OSCILLATION INDEX


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background It remains unclear over whether it is possible to develop an epidemic forecasting model for transmission of dengue fever in Queensland, Australia. Objectives To examine the potential impact of El Niño/Southern Oscillation on the transmission of dengue fever in Queensland, Australia and explore the possibility of developing a forecast model of dengue fever. Methods Data on the Southern Oscillation Index (SOI), an indicator of El Niño/Southern Oscillation activity, were obtained from the Australian Bureau of Meteorology. Numbers of dengue fever cases notified and the numbers of postcode areas with dengue fever cases between January 1993 and December 2005 were obtained from the Queensland Health and relevant population data were obtained from the Australia Bureau of Statistics. A multivariate Seasonal Auto-regressive Integrated Moving Average model was developed and validated by dividing the data file into two datasets: the data from January 1993 to December 2003 were used to construct a model and those from January 2004 to December 2005 were used to validate it. Results A decrease in the average SOI (ie, warmer conditions) during the preceding 3–12 months was significantly associated with an increase in the monthly numbers of postcode areas with dengue fever cases (β=−0.038; p = 0.019). Predicted values from the Seasonal Auto-regressive Integrated Moving Average model were consistent with the observed values in the validation dataset (root-mean-square percentage error: 1.93%). Conclusions Climate variability is directly and/or indirectly associated with dengue transmission and the development of an SOI-based epidemic forecasting system is possible for dengue fever in Queensland, Australia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims to compare the shift in frequency distribution and skill of seasonal climate forecasting of both streamflow and rainfall in eastern Australia based on the Southern Oscillation Index (SOI) Phase system. Recent advances in seasonal forecasting of climate variables have highlighted opportunities for improving decision making in natural resources management. Forecasting of rainfall probabilities for different regions in Australia is available, but the use of similar forecasts for water resource supply has not been developed. The use of streamflow forecasts may provide better information for decision-making in irrigation supply and flow management for improved ecological outcomes. To examine the relative efficacy of seasonal forecasting of streamflow and rainfall, the shift in probability distributions and the forecast skill were evaluated using the Wilcoxon rank-sum test and the linear error in probability space (LEPS) skill score, respectively, at three river gauging stations in the Border Rivers Catchment of the Murray-Darling Basin in eastern Australia. A comparison of rainfall and streamflow distributions confirms higher statistical significance in the shift of streamflow distribution than that in rainfall distribution. Moreover, streamflow distribution showed greater skill of forecasting with 0-3 month lead time, compared to rainfall distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various authors have suggested a general predictive value of climatic indices of El Nino/Southem Oscillation events as indicators of outbreaks of arbovirus disease, particularly Ross River virus in Australia. By analyzing over 100 years of historical outbreak data on Ross River virus disease, our data indicate that, although high Southern Oscillation Index and La Nina conditions are potentially important predictors for the Murray Darling River region, this is not the case for the other four ecological zones in Australia. Our study, therefore, cautions against overgeneralization and suggests that, since climate and weather exert different influences and have different biological implications for the multiplicity of vectors involved, it is logical that predictors should be heterogeneous.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the impact of the Indian Ocean Dipole (IOD) and El Nino and the Southern Oscillation (ENSO) on sea level variations in the North Indian Ocean during 1957-2008. Using tide-gauge and altimeter data, we show that IOD and ENSO leave characteristic signatures in the sea level anomalies (SLAs) in the Bay of Bengal. During a positive IOD event, negative SLAs are observed during April-December, with the SLAs decreasing continuously to a peak during September-November. During El Nino, negative SLAs are observed twice (April-December and November-July), with a relaxation between the two peaks. SLA signatures during negative IOD and La Nina events are much weaker. We use a linear, continuously stratified model of the Indian Ocean to simulate their sea level patterns of IOD and ENSO events. We then separate solutions into parts that correspond to specific processes: coastal alongshore winds, remote forcing from the equator via reflected Rossby waves, and direct forcing by interior winds within the bay. During pure IOD events, the SLAs are forced both from the equator and by direct wind forcing. During ENSO events, they are primarily equatorially forced, with only a minor contribution from direct wind forcing. Using a lead/lag covariance analysis between the Nino-3.4 SST index and Indian Ocean wind stress, we derive a composite wind field for a typical El Nino event: the resulting solution has two negative SLA peaks. The IOD and ENSO signatures are not evident off the west coast of India.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evidence of 11-year Schwabe solar sunspot cycles, El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) were detected in an annual record of diatomaceous laminated sediments from anoxic Effingham Inlet, Vancouver Island, British Columbia. Radiometric dating and counting of annual varves dates the sediments from AD 1947-1993. Intact sediment slabs were X-rayed for sediment structure (lamina thickness and composition based on gray-scale), and subsamples were examined for diatom abundances and for grain size. Wavelet analysis reveals the presence of ~2-3, ~4.5, ~7 and ~9-12-year cycles in the diatom record and an w11e13 year record in the sedimentary varve thickness record. These cycle lengths suggest that both ENSO and the sunspot cycle had an influence on primary productivity and sedimentation patterns. Sediment grain size could not be correlated to the sunspot cycle although a peak in the grain size data centered around the mid-1970s may be related to the 1976-1977 Pacific climate shift, which occurred when the PDO index shifted from negative (cool conditions) to positive (warm conditions). Additional evidence of the PDO regime shift is found in wavelet and cross-wavelet results for Skeletonema costatum, a weakly silicified variant of S. costatum, annual precipitation and April to June precipitation. Higher spring (April/May) values of the North Pacific High pressure index during sunspot minima suggest that during this time, increased cloud cover and concomitant suppression of the Aleutian Low (AL) pressure system led to strengthened coastal upwelling and enhanced diatom production earlier in the year. These results suggest that the 11-year solar cycle, amplified by cloud cover and upwelling changes, as well as ENSO, exert significant influence on marine primary productivity in the northeast Pacific. The expression of these cyclic phenomena in the sedimentary record were in turn modulated by the phase of PDO, as indicated by the change in period of ENSO and suppression of the solar signal in the record after the 1976-1977 regime shift. © 2013 Elsevier Ltd and INQUA. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fog oases, locally named Lomas, are distributed in a fragmented way along the western coast of Chile and Peru (South America) between ~6°S and 30°S following an altitudinal gradient determined by a fog layer. This fragmentation has been attributed to the hyper aridity of the desert. However, periodically climatic events influence the ‘normal seasonality’ of this ecosystem through a higher than average water input that triggers plant responses (e.g. primary productivity and phenology). The impact of the climatic oscillation may vary according to the season (wet/dry). This thesis evaluates the potential effect of climate oscillations, such as El Niño Southern Oscillation (ENSO), through the analysis of vegetation of this ecosystem following different approaches: Chapters two and three show the analysis of fog oasis along the Peruvian and Chilean deserts. The objectives are: 1) to explain the floristic connection of fog oases analysing their taxa composition differences and the phylogenetic affinities among them, 2) to explore the climate variables related to ENSO which likely affect fog production, and the responses of Lomas vegetation (composition, productivity, distribution) to climate patterns during ENSO events. Chapters four and five describe a fog-oasis in southern Peru during the 2008-2010 period. The objectives are: 3) to describe and create a new vegetation map of the Lomas vegetation using remote sensing analysis supported by field survey data, and 4) to identify the vegetation change during the dry season. The first part of our results show that: 1) there are three significantly different groups of Lomas (Northern Peru, Southern Peru, and Chile) with a significant phylogenetic divergence among them. The species composition reveals a latitudinal gradient of plant assemblages. The species origin, growth-forms typologies, and geographic position also reinforce the differences among groups. 2) Contradictory results have emerged from studies of low-cloud anomalies and the fog-collection during El Niño (EN). EN increases water availability in fog oases when fog should be less frequent due to the reduction of low-clouds amount and stratocumulus. Because a minor role of fog during EN is expected, it is likely that measurements of fog-water collection during EN are considering drizzle and fog at the same time. Although recent studies on fog oases have shown some relationship with the ENSO, responses of vegetation have been largely based on descriptive data, the absence of large temporal records limit the establishment of a direct relationship with climatic oscillations. The second part of the results show that: 3) five different classes of different spectral values correspond to the main land cover of Lomas using a Vegetation Index (VI). The study case is characterised by shrubs and trees with variable cover (dense, semi-dense and open). A secondary area is covered by small shrubs where the dominant tree species is not present. The cacti area and the old terraces with open vegetation were not identified with the VI. Agriculture is present in the area. Finally, 4) contrary to the dry season of 2008 and 2009 years, a higher VI was obtained during the dry season of 2010. The VI increased up to three times their average value, showing a clear spectral signal change, which coincided with the ENSO event of that period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports an experiment undertaken to examine the impact of burning in spring together with reduced grazing pressure on the dynamics of H. contortus and Aristida spp. In H. contortus pasture in south-eastern Queensland. The overall results indicate that spring burning in combination with reduced grazing pressure had no marked effect on the density of either grass species. This was attributed to 2 factors. Firstly, extreme drought conditions restricted any increase in H. contortus seedling establishment despite the presence of an adequate soil seed bank prior to summer; and secondly, some differences occurred in the response to fire of the diverse taxonomic groupings in the species of Aristida spp. present at the study site. This study concluded that it is necessary to identify appropriate taxonomic units within the Aristida genus and that, where appropriate, burning in spring to manage pasture composition should be conducted under favorable rainfall conditions using seasonal forecasting indicators such as the Southern Oscillation Index

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dengue dynamics are driven by complex interactions between hosts, vectors and viruses that are influenced by environmental and climatic factors. Several studies examined the role of El Niño Southern Oscillation (ENSO) in dengue incidence. However, the role of Indian Ocean Dipole (IOD), a coupled ocean atmosphere phenomenon in the Indian Ocean, which controls the summer monsoon rainfall in the Indian region, remains unexplored. Here, we examined the effects of ENSO and IOD on dengue incidence in Bangladesh. According to the wavelet coherence analysis, there was a very weak association between ENSO, IOD and dengue incidence, but a highly significant coherence between dengue incidence and local climate variables (temperature and rainfall). However, a distributed lag nonlinear model (DLNM) revealed that the association between dengue incidence and ENSO or IOD were comparatively stronger after adjustment for local climate variables, seasonality and trend. The estimated effects were nonlinear for both ENSO and IOD with higher relative risks at higher ENSO and IOD. The weak association between ENSO, IOD and dengue incidence might be driven by the stronger effects of local climate variables such as temperature and rainfall. Further research is required to disentangle these effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The annual cycle of rainfall over the Korean Peninsula is marked by two peaks: one during July and the other during August. Since the mid-1970s, the maximum rainfall over the Korean Peninsula has shifted from July to August. This shift in rainfall peak was caused by a significant increase of August rainfall after the mid-1970s. The basic reason for this shift has been traced to a change in teleconnection between El Nino-Southern Oscillation (ENSO) and August rainfall. The relationship between August rainfall over Korea and ENSO changed from 1954-1975 (PI) to 1976-2002 (PII). The variability of August rainfall was significantly associated with sea surface temperature (SST) variation over the eastern equatorial Pacific during PI, but this relationship is absent during the PII period. In El Nino years during PI, low-level westerly and southerly wind anomalies are dominant around the East China Sea, which relates to strong August rainfall. In La Nina years during PI, easterly and northerly wind anomalies are dominant. During the PII period, however, westerly and southerly wind anomalies around the East China Sea were responsible for the high August rainfall over the East Asian region, even though La Nina SST conditions were in effect over the eastern Pacific.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fishery catch data on yellowfin tuna (Thunnus albacares) were examined to study the effects of El Niño events between 1990 and 1999 for an area in the northeastern tropical Pacific (18−24°N, 112−104°W). The data were extracted from a database of logbook records from the Mexican tuna purse-seine f leet. Latitudinal distribution of the catches increased from south to north for the 10-year period. Highest catches and effort were concentrated between 22°N and 23°N. This area accumulated 48% of the total catch over the 10year period. It was strongly correlated with El Niño-Southern Oscillation (ENSO) events. At least two periods of exceptionally high catches occurred following El Niño events in 1991 and 1997. Peaks of catches were triggered by the arrival of positive anomalies of sea surface temperature (SST) to the area. A delay of two to four months was observed between the occurrence of maximum SST anomalies at the equator and peaks of catch. Prior to these two events, negative SST anomalies were the dominant feature in the study area and catch was extremely low. This trend of negative SST anomalies with low catches followed by positive SST anomalies and high catches may be attributed to northward yellowfin tuna migration patterns driven by El Niño forcing, a result that contrasts with the known behavior of decreasing relative abundance of these tuna after El Niño events in the eastern Pacific. However, this decrease in relative abundance may be the result of a local or subregional effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extreme phases of the Southern Oscillation (SO) have been linked to fairly persistent classes of circulation anomalies over the North Pacific and parts of North America. It has been more difficult to uncover correspondingly consistent patterns of surface temperature and precipitation over much of the continent. The few regions that appear to have consistent SO-related patterns of temperature and precipitation anomalies are identified and discussed. Also discussed are regions that appear to have strong SO-related surface anomalies whose sign varies from episode to episode.