977 resultados para SIZES
Resumo:
The Clay Minerals Society Source Clay kaolinites, Georgia KGa-1 and KGa-2, have been subjected to particle size determinations by 1) conventional sedimentation methods, 2) electron microscopy and image analysis, and 3) laser scattering using improved algorithms for the interaction of light with small particles. Particle shape, size distribution, and crystallinity vary considerably for each kaolinite. Replicate analyses of separated size fractions showed that in the <2 µm range, the sedimentation/centrifugation method of Tanner and Jackson (1947) is reproducible for different kaolinite types and that the calculated size ranges are in reasonable agreement with the size bins estimated from laser scattering. Particle sizes determined by laser scattering must be calculated using Mie theory when the dominant particle size is less than ∼5 µm. Based on this study of two well-known and structurally different kaolinites, laser scattering, with improved data reduction algorithms that include Mie theory, should be considered an internally consistent and rapid technique for clay particle sizing.
Resumo:
Transport through crowded environments is often classified as anomalous, rather than classical, Fickian diffusion. Several studies have sought to describe such transport processes using either a continuous time random walk or fractional order differential equation. For both these models the transport is characterized by a parameter α, where α = 1 is associated with Fickian diffusion and α < 1 is associated with anomalous subdiffusion. Here, we simulate a single agent migrating through a crowded environment populated by impenetrable, immobile obstacles and estimate α from mean squared displacement data. We also simulate the transport of a population of such agents through a similar crowded environment and match averaged agent density profiles to the solution of a related fractional order differential equation to obtain an alternative estimate of α. We examine the relationship between our estimate of α and the properties of the obstacle field for both a single agent and a population of agents; we show that in both cases, α decreases as the obstacle density increases, and that the rate of decrease is greater for smaller obstacles. Our work suggests that it may be inappropriate to model transport through a crowded environment using widely reported approaches including power laws to describe the mean squared displacement and fractional order differential equations to represent the averaged agent density profiles.
Resumo:
When radiation therapy centres are equipped with two or more linear accelerators from the same vendor, they are usually beam-matched. This work tested the sensitivity of optically stimulated luminescence dosimeters (OSLDs) across matched linear accelerators. The responses were compared with an unshielded diode detector for varying field sizes. Clinical studies are currently done with thermoluminescent dosimeters (TLD), which absorb radiation then emit some levels of light determined by the radiation absorption when heated.
Resumo:
A study was conducted during 1997-99 at 2 sites in Sri Lanka (Rambukkana and Kurunegala) to investigate the responses of Swietenia macrophylla seedlings to wide, moderate and narrow openings of high to low shade conditions in a mature mixed mahogany plantations. Survival, stem growth and shoot phenology of seedlings were recorded monthly. Seedling survival a year after planting showed high mortality under high shaded gap (3-8% photosynthetically active radiation (PAR)). At 51 weeks after planting, final stem height and root collar diameter were highly significant under low shaded gaps. Increased number of shoots and shoot lenghts were observed under low shade (50-78% PAR). Increased flushing was seen in all shade regimes during the rainy period. This study illustrates that low shaded gap openings favour seeding survival, stem and shoot growth, and number of shoots. On the contrary, high shaded gaps reduce the growth of seedlings and therefore may be less attractive to shoot borers.
Resumo:
The Driver Behaviour Questionnaire (DBQ) continues to be the most widely utilised self-report scale globally to assess crash risk and aberrant driving behaviours among motorists. However, the scale also attracts criticism regarding its perceived limited ability to accurately identify those most at risk of crash involvement. This study reports on the utilisation of the DBQ to examine the self-reported driving behaviours (and crash outcomes) of drivers in three separate Australian fleet samples (N = 443, N = 3414, & N = 4792), and whether combining the samples increases the tool’s predictive ability. Either on-line or paper versions of the questionnaire were completed by fleet employees in three organisations. Factor analytic techniques identified either three or four factor solutions (in each of the separate studies) and the combined sample produced expected factors of: (a) errors, (b) highway-code violations and (c) aggressive driving violations. Highway code violations (and mean scores) were comparable across the studies. However, across the three samples, multivariate analyses revealed that exposure to the road was the best predictor of crash involvement at work, rather than DBQ constructs. Furthermore, combining the scores to produce a sample of 8649 drivers did not improve the predictive ability of the tool for identifying crashes (e.g., 0.4% correctly identified) or for demerit point loss (0.3%). The paper outlines the major findings of this comparative sample study in regards to utilising self-report measurement tools to identify “at risk” drivers as well as the application of such data to future research endeavours.
Resumo:
Random walk models are often used to interpret experimental observations of the motion of biological cells and molecules. A key aim in applying a random walk model to mimic an in vitro experiment is to estimate the Fickian diffusivity (or Fickian diffusion coefficient),D. However, many in vivo experiments are complicated by the fact that the motion of cells and molecules is hindered by the presence of obstacles. Crowded transport processes have been modeled using repeated stochastic simulations in which a motile agent undergoes a random walk on a lattice that is populated by immobile obstacles. Early studies considered the most straightforward case in which the motile agent and the obstacles are the same size. More recent studies considered stochastic random walk simulations describing the motion of an agent through an environment populated by obstacles of different shapes and sizes. Here, we build on previous simulation studies by analyzing a general class of lattice-based random walk models with agents and obstacles of various shapes and sizes. Our analysis provides exact calculations of the Fickian diffusivity, allowing us to draw conclusions about the role of the size, shape and density of the obstacles, as well as examining the role of the size and shape of the motile agent. Since our analysis is exact, we calculateDdirectly without the need for random walk simulations. In summary, we find that the shape, size and density of obstacles has a major influence on the exact Fickian diffusivity. Furthermore, our results indicate that the difference in diffusivity for symmetric and asymmetric obstacles is significant.
Resumo:
The seizure resistance of cast graphite-aluminium composite alloys containing graphite particles of various sizes was studied using a Hohman wear tester. If the graphite content is more than 2% these alloys can be selfmated without seizure under conditions of boundary lubrication. The size and shape of the graphite particles had no significant effect on seizure resistance. Owing to the extensive deformation and fragmentation of graphite, the low yield strength of the aluminium matrix and the low flow stress of the graphite particles, a continuous layer of graphite is formed on the mating surfaces even after a short running-in period. This layer persisted even after extensive wear deformation.
Resumo:
Objective To quantify and compare the treatment effect and risk of bias of trials reporting biomarkers or intermediate outcomes (surrogate outcomes) versus trials using final patient relevant primary outcomes. Design Meta-epidemiological study. Data sources All randomised clinical trials published in 2005 and 2006 in six high impact medical journals: Annals of Internal Medicine, BMJ, Journal of the American Medical Association, Lancet, New England Journal of Medicine, and PLoS Medicine. Study selection Two independent reviewers selected trials. Data extraction Trial characteristics, risk of bias, and outcomes were recorded according to a predefined form. Two reviewers independently checked data extraction. The ratio of odds ratios was used to quantify the degree of difference in treatment effects between the trials using surrogate outcomes and those using patient relevant outcomes, also adjusted for trial characteristics. A ratio of odds ratios >1.0 implies that trials with surrogate outcomes report larger intervention effects than trials with patient relevant outcomes. Results 84 trials using surrogate outcomes and 101 using patient relevant outcomes were considered for analyses. Study characteristics of trials using surrogate outcomes and those using patient relevant outcomes were well balanced, except for median sample size (371 v 741) and single centre status (23% v 9%). Their risk of bias did not differ. Primary analysis showed trials reporting surrogate endpoints to have larger treatment effects (odds ratio 0.51, 95% confidence interval 0.42 to 0.60) than trials reporting patient relevant outcomes (0.76, 0.70 to 0.82), with an unadjusted ratio of odds ratios of 1.47 (1.07 to 2.01) and adjusted ratio of odds ratios of 1.46 (1.05 to 2.04). This result was consistent across sensitivity and secondary analyses. Conclusions Trials reporting surrogate primary outcomes are more likely to report larger treatment effects than trials reporting final patient relevant primary outcomes. This finding was not explained by differences in the risk of bias or characteristics of the two groups of trials.
Resumo:
Despite international protection of white sharks Carcharodon carcharias, important conservation parameters such as abundance, population structure and genetic diversity are largely unknown. The tissue of 97 predominately juvenile white sharks sampled from spatially distant eastern and southwestern Australian coastlines was sequenced for the mitochondrial DNA (mtDNA) control region and genotyped with 6 nuclear-encoded microsatellite loci. MtDNA population structure was found between the eastern and southwestern coasts (F-ST = 0.142, p < 0.0001), implying female reproductive philopatry. This concurs with recent satellite and acoustic tracking findings which suggest the sustained presence of discrete east coast nursery areas. Furthermore, population subdivision was found between the same regions with biparentally inherited micro satellite markers (F-ST = 0.009, p < 0.05), suggesting that males may also exhibit some degree of reproductive philopatry; 5 sharks captured along the east coast had mtDNA haplotypes that resembled western Indian Ocean sharks more closely than Australian/New Zealand sharks, suggesting that transoceanic dispersal, or migration resulting in breeding, may occur sporadically. Our most robust estimate of contemporary genetic effective population size was low and close to thresholds at which adaptive potential may be lost. For a variety of reasons, these contemporary estimates were at least 1, possibly 2, orders of magnitude below our historical effective size estimates. Population decline could expose these genetically isolated populations to detrimental genetic effects. Regional Australian white shark conservation management units should be implemented until genetic population structure, size and diversity can be investigated in more detail.
Resumo:
Many biological environments are crowded by macromolecules, organelles and cells which can impede the transport of other cells and molecules. Previous studies have sought to describe these effects using either random walk models or fractional order diffusion equations. Here we examine the transport of both a single agent and a population of agents through an environment containing obstacles of varying size and shape, whose relative densities are drawn from a specified distribution. Our simulation results for a single agent indicate that smaller obstacles are more effective at retarding transport than larger obstacles; these findings are consistent with our simulations of the collective motion of populations of agents. In an attempt to explore whether these kinds of stochastic random walk simulations can be described using a fractional order diffusion equation framework, we calibrate the solution of such a differential equation to our averaged agent density information. Our approach suggests that these kinds of commonly used differential equation models ought to be used with care since we are unable to match the solution of a fractional order diffusion equation to our data in a consistent fashion over a finite time period.
Resumo:
Recently, we demonstrated a very general route to monolithic macroporous materials prepared without the use of templates (Rajamathi et al. J. Mater. Chem. 2001, 11, 2489). The route involves finding a precursor containing two metals, A and B, whose oxides are largely immiscible. Firing of the precursor followed by suitable sintering results in a monolith from which one of the oxide phases can be chemically leached out to yield a macroporous mass of the other oxide phase. The metals A and B that we employed in the demonstration were Ni and Zn. From the NiO-ZnO monolith that was obtained by decomposing the precursor, ZnO could be leached out at high pH to yield macroporous NiO. In the present work, we show that combustion-chemical (also called self-propagating) decomposition of a mixture of Ni and Zn nitrates with urea as a fuel yields an intimate mixture of the oxides that can be sintered and leached with alkali to form a macroporous NiO monolith. The new process that we present here thereby avoids the need for a crystalline single-source precursor. A novel and unanticipated aspect of the present work is that the combination of high temperatures and rapid quenching associated with combustion synthesis results in an intimate mixture of wurtzite ZnO and the metastable rock-salt Ni1-xZnxO where x is about 0.3. Leaching this monolith with alkali gives a macroporous mass of rock-salt Ni1-xZnxO, which upon reduction in H-2/Ar forms macroporous Ni and ZnO. There are thus two stages in the process that lead to two modes of pore formation. The first is associated with leaching of ZnO by alkali. The second is associated with the reduction of porous Ni1-xZnxO to give porous Ni and ZnO.
Resumo:
Geologic evidence along the northern part of the 2004 Aceh-Andaman rupture suggests that this region generated as many as five tsunamis in the prior 2000years. We identify this evidence by drawing analogy with geologic records of land-level change and the tsunami in 2004 from the Andaman and Nicobar Islands (A&N). These analogs include subsided mangrove swamps, uplifted coral terraces, liquefaction, and organic soils coated by sand and coral rubble. The pre-2004 evidence varies in potency, and materials dated provide limiting ages on inferred tsunamis. The earliest tsunamis occurred between the second and sixth centuries A.D., evidenced by coral debris of the southern Car Nicobar Island. A subsequent tsunami, probably in the range A.D. 770-1040, is inferred from deposits both in A&N and on the Indian subcontinent. It is the strongest candidate for a 2004-caliber earthquake in the past 2000years. A&N also contain tsunami deposits from A.D. 1250 to 1450 that probably match those previously reported from Sumatra and Thailand, and which likely date to the 1390s or 1450s if correlated with well-dated coral uplift offshore Sumatra. Thus, age data from A&N suggest that within the uncertainties in estimating relative sizes of paleo-earthquakes and tsunamis, the 1000year interval can be divided in half by the earthquake or earthquakes of A.D. 1250-1450 of magnitude >8.0 and consequent tsunamis. Unlike the transoceanic tsunamis generated by full or partial rupture of the subduction interface, the A&N geology further provides evidence for the smaller-sized historical tsunamis of 1762 and 1881, which may have been damaging locally.