971 resultados para SENSITIVE PROPERTIES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pristine and long-chain functionalized single-walled carbon nanotubes (SWNTs) were incorporated successfully in supramolecular organogels formed by an all-trans tri(p-phenylenevinylene) bis-aldoxime to give rise to new nanocomposites with interesting mechanical, thermal and electrical properties. Variable-temperature UV-vis and fluorescence spectra reveal both pristine and functionalized SWNTs promote aggregation of the gelator molecules and result in quenching of the UV-vis and fluorescence intensity. Electron microscopy and confocal microscopy show the existence of a densely packed and directionally aligned fibrous network in the resulting nanocomposites. Differential scanning calorimetry (DSC) of the composites shows that incorporation of SWNTs increases the gel formation temperature. The DSC of the xerogels of 1-SWNT composites indicates formation of different thermotropic mesophases which is also evident from polarized optical microscopy. The reinforced aggregation of the gelators on SWNT doping was reflected in the mechanical properties of the composites. Rheology of the composites demonstrates the formation of a rigid and viscoelastic solid-like assembly on SWNT incorporation. The composites from gel-SWNTs were found to be semiconducting in nature and showed enhanced electrical conductivity compared to that of the native organogel. Upon irradiation with a near IR laser at 1064 nm for 5 min it was possible to selectively induce a gel-to-sol phase transition of the nanocomposites, while irradiation for even 30 min of the native organogel under identical conditions did not cause any gel-to-sol conversion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The monolayer and deposition behaviour of a symmetrically substituted copper tetra-4-(2, 4-di-t-amylphenoxy) phthalocyanine (tapCuPc) and an asymmetrically substituted copper [tri-4-(2, 4-di-t-amylphenoxy)-mono-4-(-2-methoxyethoxy)]phthalocyanine (AsyCuPc) were investigated. The results on monolayer behaviour and spectroscopic characterization of the LB films show that both CuPc molecules in a monolayer at the air-water interface and the LB films are stacked and inclined. The gas-sensitive properties show that the responding speed of AsyCuPc LB film is faster than that of tapCuPc LB film.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

On December 20th 2006 the European Commission approved a law proposal to include the civil aviation sector in the European market of carbon dioxide emission rights [European Union Emissions Trading System, EUETS). On July 8th 2009, the European Parliament and Conseil agreed that all flights leaving or landing in the EU airports starting from January 1st 2012 should be included in the EUETS. On November 19th 2008, the EU Directive 2008/101/CE [1] included the civil aviation activities in the EUETS, and this directive was transposed by the Spanish law 13/2010 of July 5th 2010 [2]. Thus, in 2012 the aviation sector should reduce their emissions to 97 % of the mean values registered in the period 2004-2006, and for 2013 these emission reductions should reach 95 % of the mean values for that same period. Trying to face this situation, the aviation companies are planning seriously the use of alternative jet fuels to reduce their greenhouse gas emissions and to lower their costs. However, some US airlines have issued a lawsuit before the European Court of Justice based in that this EU action violates a long standing worldwide aviation treaty, the Chicago convention of 1944, and also the Chinese aviation companies have rejected to pay any EU carbon dioxide tax [3]. Moreover, the USA Departments of Agriculture and Energy and the Navy will invest a total of up to $150 million over three years to spur production of aviation and marine biofuels for commercial and military applications [4]. However, the jet fuels should fulfill a set of extraordinarily sensitive properties to guarantee the safety of planes and passengers during all the flights.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atlantic and Gulf Coast shorelines include some of the most unique and biologically rich ecosystems in the United States that provide immeasurable aesthetic, habitat and economic benefits. Natural coastal ecosystems, however, are under increasing threat from rampant and irresponsible growth and development. Once a boon to local economies, complex natural forces – enhanced by global climate change and sea level rise - are now considered hazards and eroding the very foundation upon which coastal development is based. For nearly a century, beach restoration and erosion control structures have been used to artificially stabilize shorelines in an effort to protect structures and infrastructure. Beach restoration, the import and emplacement of sand on an eroding beach, is expensive, unpredictable, inefficient and may result in long-term environmental impacts. The detrimental environmental impacts of erosion control structures such as sea walls, groins, bulkheads and revetments include sediment deficits, accelerated erosion and beach loss. These and other traditional responses to coastal erosion and storm impacts- along with archaic federal and state policies, subsidies and development incentives - are costly, encourage risky development, artificially increase property values of high-risk or environmentally sensitive properties, reduce the post-storm resilience of shorelines, damage coastal ecosystems and are becoming increasingly unsustainable. Although communities, coastal managers and property owners face increasingly complex and difficult challenges, there is an emerging public, social and political awareness that, without meaningful policy reforms, coastal ecosystems and economies are in jeopardy. Strategic retreat is a sustainable, interdisciplinary management strategy that supports the proactive, planned removal of vulnerable coastal development; reduces risk; increases shoreline resiliency and ensures long term protection of coastal systems. Public policies and management strategies that can overcome common economic misperceptions and promote the removal of vulnerable development will provide state and local policy makers and coastal managers with an effective management tool that concomitantly addresses the economic, environmental, legal and political issues along developed shorelines. (PDF contains 4 pages)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atlantic and Gulf Coast shorelines include some of the most unique and biologically rich ecosystems in the United States that provide immeasurable aesthetic, habitat and economic benefits. Natural coastal ecosystems, however, are under increasing threat from rampant and irresponsible growth and development. Once a boon to local economies, complex natural forces – enhanced by global climate change and sea level rise - are now considered hazards and eroding the very foundation upon which coastal development is based. For nearly a century, beach restoration and erosion control structures have been used to artificially stabilize shorelines in an effort to protect structures and infrastructure. Beach restoration, the import and emplacement of sand on an eroding beach, is expensive, unpredictable, inefficient and may result in long-term environmental impacts. The detrimental environmental impacts of erosion control structures such as sea walls, groins, bulkheads and revetments include sediment deficits, accelerated erosion and beach loss. These and other traditional responses to coastal erosion and storm impacts- along with archaic federal and state policies, subsidies and development incentives - are costly, encourage risky development, artificially increase property values of high-risk or environmentally sensitive properties, reduce the post-storm resilience of shorelines, damage coastal ecosystems and are becoming increasingly unsustainable. Although communities, coastal managers and property owners face increasingly complex and difficult challenges, there is an emerging public, social and political awareness that, without meaningful policy reforms, coastal ecosystems and economies are in jeopardy. Strategic retreat is a sustainable, interdisciplinary management strategy that supports the proactive, planned removal of vulnerable coastal development; reduces risk; increases shoreline resiliency and ensures long term protection of coastal systems. Public policies and management strategies that can overcome common economic misperceptions and promote the removal of vulnerable development will provide state and local policy makers and coastal managers with an effective management tool that concomitantly addresses the economic, environmental, legal and political issues along developed shorelines. (PDF contains 4 pages)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The unique surface-sensitive properties make quantum dots (QDs) great potential in the development of sensors for various analytes. However, quantum dots are not only sensitive to a certain analyte, but also to the surrounding conditions. The controlled response to analyte may be the first step in the designing of functional quantum dots sensors. In this study, taking the quenching effect of benzoquinone (BQ) on CdTe QDs as model, several critical parameters of buffer solution conditions with potential effect on the sensors were investigated. The pH value and the concentration of sodium citrate in the buffer solution critically influenced the quenching effects of BQ.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Ang II plays a major role in cardiovascular regulation. Recently, it has become apparent that vascular superoxide anion may play an important role in hypertension development. Treatment with antisense NAD(P)H oxidase or SOD decreased BP in Ang II-infused rats. Wang et al recently reported mice which lack one of the subunits of NAD(P)H oxidase developed hypertension at a much lower extent when compared to the wild type animals infused with Ang II, indicating that superoxide anion contributes to elevation in BP in the Ang II-infused hypertensive model. In the Ang II-infused hypertensive model, altered reactivity of blood vessels is often associated with the elevation of systolic blood pressure. We have observed abnormal tension development and impaired endothelium-dependent relaxation in the isolated aorta of Ang II-infused and DOCA-salt hypertensive rats. Recently, several other cellular signal molecules, including ERK1I2 and PI3K, have been determined to play important roles in the regulation of smooth muscle contraction and relaxation. ERKl/2 and PI3K pathways are also reported to contribute to Ang II induced cell growth, hypertrophy, remodeling and contraction. Moreover, these signaling pathways have shown ROS-sensitive properties. Therefore, the aim of the present study is to investigate the roles of ERKl12 and PI3K in vascular oxidative stress, spontaneous tone and impaired endothelium relaxation in Ang II-infused hypertensive model. Hypothesis: We hypothesize that the activation of ERKl12 and PI3K are elevated in response to an Ang II infusion for 6 days. The elevated activation of phospho-ERKl/2 and PI3K mediated the increased level of vascular superoxide anion, the abnormal vascular contraction and impaired endothelium-dependent vascular relaxation in Ang II-infused hypertensive rats. Methods: Vascular superoxide anion level is measured by lucigenin chemiluminescence. Spontaneous tone and ACh-induced endothelium-dependent relaxation was measured by isometric tension recording in organ chamber. The activity of ERK pathway will be measured by its Western blot of phosphorylation of ERK. PI3K activity was evaluated indirectly by Western blot of the phosphorylation of PDKl, a downstream protein of PI3K signaling pathway. The role of each pathway was also addressed via comparing the responses to the specific inhibitors. Results: Superoxide anion was markedly increased in the isolated thoracic aorta from Ang II-infused rats. There was spontaneous tone developed in rings from Ang II-induced hypertensive but not sham-operated normotensive rats. ACh-induced endothelium-dependent relaxation function is impaired in Ang II-infused hypertensive rats. Superoxide dismutase and NAD(P)H oxidase inhibitor, apocynin, inhibited the abnormal spontaneous tone and ameliorated impaired endothelium-dependent relaxation. The expression of phopho-ERKII2 was enhanced in Ang II-infused rats, indicating the activity of ERK1I2 could be increased. MEK1I2 inhibitors, PD98059 and U126, but not their inactive analogues, SB203580 and U124, significantly reduced the vascular superoxide anion in aortas from Ang II-infused rats. The MEK1I2 inhibitors reduced the spontaneous tone and improved the impaired endothelium-dependent relaxation in aorta of hypertension. These findings supported the role of ERKII2 signaling pathway in vascular oxidative stress, spontaneous tone and impaired endothelium-dependent relaxation in Ang II-infused hypertensive rats. The amount of phospho-PDK, a downstream protein of PI3K was increased in Ang II rats indicating the activity of PI3K activity was elevated. Strikingly, PI3K significantly inhibited the increase of superoxide anion level, abnormal spontaneous tone and restored endothelium-dependent relaxation in Ang II-infused hypertensive rats. These findings indicated the important role of PI3K in Ang II-infused hypertensive rats. Conclusion: ERKII2 and PI3K signaling pathways are sustained activated in Ang II-infused hypertensive rats. The activated ERKII2 and PI3K mediate the increase of vascular superoxide anion level, vascular abnormal spontaneous tone and impaired endothelium-dependent relaxation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les oligonucléotides (ONs) antisens présentent un fort potentiel en tant qu’agents thérapeutiques. Toutefois, leurs propriétés physicochimiques limitent leur utilisation en thérapie génique. Pour pallier aux divers obstacles, des systèmes de vectorisation, tels que les micelles polyioniques (PICMs), ont été développés. Grâce à leur structure unique, les micelles protégent l’ON contre une dégradation prématurée et le couplage d’un ligand à leur surface augmente leur spécificité et leur internalisation. Dans d’autres systèmes, un polymère adjuvant aux propriétés pH-sensibles peut être ajouté pour faciliter la sortie de l’endosome et augmenter l’efficacité de l’ON. L’objectif général de ce mémoire était de mettre au point des PICMs ternaires ciblées pour l’administration d’ONs. Ces micelles assureraient à la fois l’internalisation cellulaire de leur cargaison en interagissant avec des récepteurs cellulaires et sa fuite de l’endosome grâce à un mécanisme de déstabilisation de la membrane endosomale. Pour cela, des PICMs composées d’un copolymère cationique de type poly(éthylène glycol)-bloc-poly(méthacrylate d’(alkylamino)éthyle) et d’un copolymère d’acide méthacrylique ont été préparées. Les propriétés physicochimiques de ces vecteurs ont démontré qu’ils permettaient une condensation efficace de l’acide nucléique et ce, indépendamment de la nature du polymère cationique et de l’acide nucléique. Finalement, une approche de couplage par pont disulfure a été développée afin de greffer au copolymère un fragment d’anticorps dirigé contre les récepteurs de la transferrine. En conclusion, ces travaux démontrent la versatilité et le potentiel des PICMs ternaires en tant que vecteurs d’acide nucléique, et proposent une méthodologie de couplage d’un ligand afin de formuler des PICMs ciblées.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modelling of disorder in organic crystals is highly desirable since it would allow thermodynamic stabilities and other disorder-sensitive properties to be estimated for such systems. Two disordered organic molecular systems are modeled using a symmetry-adapted ensemble approach, in which the disordered system is treated as an ensemble of the configurations of a supercell with respect to substitution of one disorder component for another. Computation time is kept manageable by performing calculations only on the symmetrically inequivalent configurations. Calculations are presented on a substitutionally disordered system, the dichloro/dibromobenzene solid solution, and on an orientationally disordered system, eniluracil, and the resultant free energies, disorder patterns, and system properties are discussed. The results are found to be in agreement with experiment following manual removal of physically implausible configurations from ensemble averages, highlighting the dangers of a completely automated approach to organic crystal thermodynamics which ignores the barriers to equilibration once the crystal has been formed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thesis is divided in three chapters, each one covering one topic. Initially, the thermo-mechanical and impact properties of materials used for back protectors have been analysed. Dynamical mechanical analysis (DMTA) has shown that materials used for soft-shell protectors present frequency-sensitive properties. Furthermore, through impact tests, the shock absorbing characteristics of the materials have been investigated proving the differences between soft and hard-shell protectors; moreover it has been demonstrated that the materials used for soft-shell protectors maintain their protective properties after multi-impacts. The second chapter covers the effect of the visco-elastic properties of the thermoplastic polymers on the flexural and rebound behaviours of ski boots. DMTA analysis on the materials and flexural and rebound testing on the boots have been performed. A comparison of the results highlighted a correlation between the visco-elastic properties and the flexural and rebound behaviour of ski boots. The same experimental methods have been used to investigate the influence of the design on the flexural and rebound behaviours. Finally in the third chapter the thermoplastic materials employed for the construction of ski boots soles have been characterized in terms of chemical composition, hardness, crystallinity, surface roughness and coefficient of friction (COF). The results showed a relation between material hardness and grip, in particular softer materials provide more grip with respect to harder materials. On the contrary, the surface roughness has a negative effect on friction because of the decrease in contact area. The measure of grip on inclined wet surfaces showed again a relation between hardness and grip. The performance ranking of the different materials has been the same for the COF and for the slip angle tests, indicating that COF can be used as a parameter for the choice of the optimal material to be used for the soles of ski boots.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chapter 1 of this thesis comprises a review of polyether polyamines, i.e., combinations of polyether scaffolds with polymers bearing multiple amino moieties. Focus is laid on controlled or living polymerization methods. Furthermore, fields in which the combination of cationic, complexing, and pH-sensitive properties of the polyamines and biocompatibility and water-solubility of polyethers promise enormous potential are presented. Applications include stimuli-responsive polymers with a lower critical solution temperature (LCST) and/or the ability to gel, preparation of shell cross-linked (SCL) micelles, gene transfection, and surface functionalization.rnIn Chapter 2, multiaminofunctional polyethers relying on the class of glycidyl amine comonomers for anionic ring-opening polymerization (AROP) are presented. In Chapter 2.1, N,N-diethyl glycidyl amine (DEGA) is introduced for copolymerization with ethylene oxide (EO). Copolymer microstructure is assessed using online 1H NMR kinetics, 13C NMR triad sequence analysis, and differential scanning calorimetry (DSC). The concurrent copolymerization of EO and DEGA is found to result in macromolecules with a gradient structure. The LCSTs of the resulting copolymers can be tailored by adjusting DEGA fraction or pH value of the environment. Quaternization of the amino moieties by methylation results in polyelectrolytes. Block copolymers are used for PEGylated gold nanoparticle formation. Chapter 2.2 deals with a glycidyl amine monomer with a removable protecting group at the amino moiety, for liberation of primary amines at the polyether backbone, which is N,N-diallyl glycidyl amine (DAGA). Its allyl groups are able to withstand the harsh basic conditions of AROP, but can be cleaved homogeneously after polymerization. Gradient as well as block copolymers poly(ethylene glycol)-PDAGA (PEG-PDAGA) are obtained. They are analyzed regarding their microstructure, LCST behavior, and cleavage of the protecting groups. rnChapter 3 describes applications of multi(amino)functional polyethers for functionalization of inorganic surfaces. In Chapter 3.1, they are combined with an acetal-protected catechol initiator, leading to well-defined PEG and heteromultifunctional PEG analogues. After deprotection, multifunctional PEG ligands capable of attaching to a variety of metal oxide surfaces are obtained. In a cooperative project with the Department of Inorganic and Analytical Chemistry, JGU Mainz, their potential is demonstrated on MnO nanoparticles, which are promising candidates as T1 contrast agents in magnetic resonance imaging. The MnO nanoparticles are solubilized in aqueous solution upon ligand exchange. In Chapter 3.2, a concept for passivation and functionalization of glass surfaces towards gold nanorods is developed. Quaternized mPEG-b-PqDEGA diblock copolymers are attached to negatively charged glass surfaces via the cationic PqDEGA blocks. The PEG blocks are able to suppress gold nanorod adsorption on the glass in the flow cell, analyzed by dark field microscopy.rnChapter 4 highlights a straightforward approach to poly(ethylene glycol) macrocycles. Starting from commercially available bishydroxy-PEG, cyclic polymers are available by perallylation and ring-closing metathesis in presence of Grubbs’ catalyst. Purification of cyclic PEG is carried out using α-cyclodextrin. This cyclic sugar derivative forms inclusion complexes with remaining unreacted linear PEG in aqueous solution. Simple filtration leads to pure macrocycles, as evidenced by SEC and MALDI-ToF mass spectrometry. Cyclic polymers from biocompatible precursors are interesting materials regarding their increased blood circulation time compared to their linear counterparts.rnIn the Appendix, A.1, a study of the temperature-dependent water-solubility of polyether copolymers is presented. Macroscopic cloud points, determined by turbidimetry, are compared with microscopic aggregation phenomena, monitored by continuous wave electron paramagnetic resonance (CW EPR) spectroscopy in presence of the amphiphilic spin probe and model drug (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO). These thermoresponsive polymers are promising candidates for molecular transport applications. The same techniques are applied in Chapter A.2 to explore the pH-dependence of the cloud points of PEG-PDEGA copolymers in further detail. It is shown that the introduction of amino moieties at the PEG backbone allows for precise manipulation of complex phase transition modes. In Chapter A.3, multi-hydroxyfunctional polysilanes are presented. They are obtained via copolymerization of the acetal-protected dichloro(isopropylidene glyceryl propyl ether)methylsilane monomer. The hydroxyl groups are liberated through acidic work-up, yielding versatile access to new multifunctional polysilanes.