998 resultados para SEIR epidemic models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is aimed at designing a robust vaccination strategy capable of eradicating an infectious disease from a population regardless of the potential uncertainty in the parameters defining the disease. For this purpose, a control theoretic approach based on a sliding-mode control law is used. Initially, the controller is designed assuming certain knowledge of an upper-bound of the uncertainty signal. Afterwards, this condition is removed while an adaptive sliding control system is designed. The closed-loop properties are proved mathematically in the nonadaptive and adaptive cases. Furthermore, the usual sign function appearing in the sliding-mode control is substituted by the saturation function in order to prevent chattering. In addition, the properties achieved by the closed-loop system under this variation are also stated and proved analytically. The closed-loop system is able to attain the control objective regardless of the parametric uncertainties of the model and the lack of a priori knowledge on the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper applies Micken's discretization method to obtain a discrete-time SEIR epidemic model. The positivity of the model along with the existence and stability of equilibrium points is discussed for the discrete-time case. Afterwards, the design of a state observer for this discrete-time SEIR epidemic model is tackled. The analysis of the model along with the observer design is faced in an implicit way instead of obtaining first an explicit formulation of the system which is the novelty of the presented approach. Moreover, some sufficient conditions to ensure the asymptotic stability of the observer are provided in terms of a matrix inequality that can be cast in the form of a LMI. The feasibility of the matrix inequality is proved, while some simulation examples show the operation and usefulness of the observer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a vaccination strategy for fighting against the propagation of epidemic diseases. The disease propagation is described by an SEIR (susceptible plus infected plus infectious plus removed populations) epidemic model. The model takes into account the total population amounts as a refrain for the illness transmission since its increase makes the contacts among susceptible and infected more difficult. The vaccination strategy is based on a continuous-time nonlinear control law synthesised via an exact feedback input-output linearization approach. An observer is incorporated into the control scheme to provide online estimates for the susceptible and infected populations in the case when their values are not available from online measurement but they are necessary to implement the control law. The vaccination control is generated based on the information provided by the observer. The control objective is to asymptotically eradicate the infection from the population so that the removed-by-immunity population asymptotically tracks the whole one without precise knowledge of the partial populations. The model positivity, the eradication of the infection under feedback vaccination laws and the stability properties as well as the asymptotic convergence of the estimation errors to zero as time tends to infinity are investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper relies on the concept of next generation matrix defined ad hoc for a new proposed extended SEIR model referred to as SI(n)R-model to study its stability. The model includes n successive stages of infectious subpopulations, each one acting at the exposed subpopulation of the next infectious stage in a cascade global disposal where each infectious population acts as the exposed subpopulation of the next infectious stage. The model also has internal delays which characterize the time intervals of the coupling of the susceptible dynamics with the infectious populations of the various cascade infectious stages. Since the susceptible subpopulation is common, and then unique, to all the infectious stages, its coupled dynamic action on each of those stages is modeled with an increasing delay as the infectious stage index increases from 1 to n. The physical interpretation of the model is that the dynamics of the disease exhibits different stages in which the infectivity and the mortality rates vary as the individual numbers go through the process of recovery, each stage with a characteristic average time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we examine the time T to reach a critical number K0 of infections during an outbreak in an epidemic model with infective and susceptible immigrants. The underlying process X, which was first introduced by Ridler-Rowe (1967), is related to recurrent diseases and it appears to be analytically intractable. We present an approximating model inspired from the use of extreme values, and we derive formulae for the Laplace-Stieltjes transform of T and its moments, which are evaluated by using an iterative procedure. Numerical examples are presented to illustrate the effects of the contact and removal rates on the expected values of T and the threshold K0, when the initial time instant corresponds to an invasion time. We also study the exact reproduction number Rexact,0 and the population transmission number Rp, which are random versions of the basic reproduction number R0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with SIR (susceptible--infected--removed) household epidemic models in which the infection response may be either mild or severe, with the type of response also affecting the infectiousness of an individual. Two different models are analysed. In the first model, the infection status of an individual is predetermined, perhaps due to partial immunity, and in the second, the infection status of an individual depends on the infection status of its infector and on whether the individual was infected by a within- or between-household contact. The first scenario may be modelled using a multitype household epidemic model, and the second scenario by a model we denote by the infector-dependent-severity household epidemic model. Large population results of the two models are derived, with the focus being on the distribution of the total numbers of mild and severe cases in a typical household, of any given size, in the event that the epidemic becomes established. The aim of the paper is to investigate whether it is possible to determine which of the two underlying explanations is causing the varying response when given final size household outbreak data containing mild and severe cases. We conduct numerical studies which show that, given data on sufficiently many households, it is generally possible to discriminate between the two models by comparing the Kullback-Leibler divergence for the two fitted models to these data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Standard Susceptible-Infected-Susceptible (SIS) epidemic models assume that a message spreads from the infected to the susceptible nodes due to only susceptible-infected epidemic contact. We modify the standard SIS epidemic model to include direct recruitment of susceptible individuals to the infected class at a constant rate (independent of epidemic contacts), to accelerate information spreading in a social network. Such recruitment can be carried out by placing advertisements in the media. We provide a closed form analytical solution for system evolution in the proposed model and use it to study campaigning in two different scenarios. In the first, the net cost function is a linear combination of the reward due to extent of information diffusion and the cost due to application of control. In the second, the campaign budget is fixed. Results reveal the effectiveness of the proposed system in accelerating and improving the extent of information diffusion. Our work is useful for devising effective strategies for product marketing and political/social-awareness/crowd-funding campaigns that target individuals in a social network.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study a stochastic process describing the onset of spreading dynamics of an epidemic in a population composed of individuals of three classes: susceptible (S), infected (I), and recovered (R). The stochastic process is defined by local rules and involves the following cyclic process: S -> I -> R -> S (SIRS). The open process S -> I -> R (SIR) is studied as a particular case of the SIRS process. The epidemic process is analyzed at different levels of description: by a stochastic lattice gas model and by a birth and death process. By means of Monte Carlo simulations and dynamical mean-field approximations we show that the SIRS stochastic lattice gas model exhibit a line of critical points separating the two phases: an absorbing phase where the lattice is completely full of S individuals and an active phase where S, I and R individuals coexist, which may or may not present population cycles. The critical line, that corresponds to the onset of epidemic spreading, is shown to belong in the directed percolation universality class. By considering the birth and death process we analyze the role of noise in stabilizing the oscillations. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fornisce una breve trattazione di due tipi di modelli matematici applicabili nel campo dell'epidemologia, prendendo spunto da un articolo del biologo matematico A. Korobeinikov, "Lyapunov function and global properties for SEIR and SEIS epidemic models".

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Detecting change points in epidemic models has been studied by many scholars. Yao (1993) summarized five existing test statistics in the literature. Out of those test statistics, it was observed that the likelihood ratio statistic showed its standout power. However, all of the existing test statistics are based on an assumption that population variance is known, which is an unrealistic assumption in practice. To avoid assuming known population variance, a new test statistic for detecting epidemic models is studied in this thesis. The new test statistic is a parameter-free test statistic which is more powerful compared to the existing test statistics. Different sample sizes and lengths of epidemic durations are used for the power comparison purpose. Monte Carlo simulation is used to find the critical values of the new test statistic and to perform the power comparison. Based on the Monte Carlo simulation result, it can be concluded that the sample size and the length of the duration have some effect on the power of the tests. It can also be observed that the new test statistic studied in this thesis has higher power than the existing test statistics do in all of cases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis studies robustness against large-scale failures in communications networks. If failures are isolated, they usually go unnoticed by users thanks to recovery mechanisms. However, such mechanisms are not effective against large-scale multiple failures. Large-scale failures may cause huge economic loss. A key requirement towards devising mechanisms to lessen their impact is the ability to evaluate network robustness. This thesis focuses on multilayer networks featuring separated control and data planes. The majority of the existing measures of robustness are unable to capture the true service degradation in such a setting, because they rely on purely topological features. One of the major contributions of this thesis is a new measure of functional robustness. The failure dynamics is modeled from the perspective of epidemic spreading, for which a new epidemic model is proposed. Another contribution is a taxonomy of multiple, large-scale failures, adapted to the needs and usage of the field of networking.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Epidemics of marine pathogens can spread at extremely rapid rates. For example, herpes virus spread through pilchard populations in Australia at a rate in excess of 10 000 km year(-1), and morbillivirus infections in seals and dolphins have spread at more than 3000 km year(-1). In terrestrial environments, only the epidemics of myxomatosis and calicivirus in Australian rabbits and West Nile Virus in birds in North America have rates of spread in excess of 1000 km year(-1). The rapid rates of spread of these epidemics has been attributed to flying insect vectors, but flying vectors have not been proposed for any marine pathogen. The most likely explanation for the relatively rapid spread of marine pathogens is the lack of barriers to dispersal in some parts of the ocean, and the potential for long-term survival of pathogens outside the host. These findings caution that pathogens may pose a particularly severe problem in the ocean. There is a need to develop epidemic models capable of generating these high rates of spread and obtain more estimates of disease spread rate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Foot and mouth disease (FMD) is a major threat, not only to countries whose economies rely on agricultural exports, but also to industrialised countries that maintain a healthy domestic livestock industry by eliminating major infectious diseases from their livestock populations. Traditional methods of controlling diseases such as FMD require the rapid detection and slaughter of infected animals, and any susceptible animals with which they may have been in contact, either directly or indirectly. During the 2001 epidemic of FMD in the United Kingdom (UK), this approach was supplemented by a culling policy driven by unvalidated predictive models. The epidemic and its control resulted in the death of approximately ten million animals, public disgust with the magnitude of the slaughter, and political resolve to adopt alternative options, notably including vaccination, to control any future epidemics. The UK experience provides a salutary warning of how models can be abused in the interests of scientific opportunism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ross River Virus has caused reported outbreaks of epidemic polyarthritis, a chronic debilitating disease associated with significant long-term morbidity in Australia and the Pacific region since the 1920s. To address this public health concern, a formalin- and UV-inactivated whole virus vaccine grown in animal protein-free cell culture was developed and tested in preclinical studies to evaluate immunogenicity and efficacy in animal models. After active immunizations, the vaccine dose-dependently induced antibodies and protected adult mice from viremia and interferon α/β receptor knock-out (IFN-α/βR(-/-)) mice from death and disease. In passive transfer studies, administration of human vaccinee sera followed by RRV challenge protected adult mice from viremia and young mice from development of arthritic signs similar to human RRV-induced disease. Based on the good correlation between antibody titers in human sera and protection of animals, a correlate of protection was defined. This is of particular importance for the evaluation of the vaccine because of the comparatively low annual incidence of RRV disease, which renders a classical efficacy trial impractical. Antibody-dependent enhancement of infection, did not occur in mice even at low to undetectable concentrations of vaccine-induced antibodies. Also, RRV vaccine-induced antibodies were partially cross-protective against infection with a related alphavirus, Chikungunya virus, and did not enhance infection. Based on these findings, the inactivated RRV vaccine is expected to be efficacious and protect humans from RRV disease