858 resultados para Robust Probabilistic Model, Dyslexic Users, Rewriting, Question-Answering
Resumo:
The value of Question Answering (Q&A) communities is dependent on members of the community finding the questions they are most willing and able to answer. This can be difficult in communities with a high volume of questions. Much previous has work attempted to address this problem by recommending questions similar to those already answered. However, this approach disregards the question selection behaviour of the answers and how it is affected by factors such as question recency and reputation. In this paper, we identify the parameters that correlate with such a behaviour by analysing the users' answering patterns in a Q&A community. We then generate a model to predict which question a user is most likely to answer next. We train Learning to Rank (LTR) models to predict question selections using various user, question and thread feature sets. We show that answering behaviour can be predicted with a high level of success, and highlight the particular features that inuence users' question selections.
Resumo:
A Teia Mundial (Web) foi prevista como uma rede de documentos de hipertexto interligados de forma a criar uma espaço de informação onde humanos e máquinas poderiam comunicar. No entanto, a informação contida na Web tradicional foi/é armazenada de forma não estruturada o que leva a que apenas os humanos a possam consumir convenientemente. Consequentemente, a procura de informações na Web sintáctica é uma tarefa principalmente executada pelos humanos e nesse sentido nem sempre é fácil de concretizar. Neste contexto, tornou-se essencial a evolução para uma Web mais estruturada e mais significativa onde é dado significado bem definido à informação de forma a permitir a cooperação entre humanos e máquinas. Esta Web é usualmente referida como Web Semântica. Além disso, a Web Semântica é totalmente alcançável apenas se os dados de diferentes fontes forem ligados criando assim um repositório de Dados Abertos Ligados (LOD). Com o aparecimento de uma nova Web de Dados (Abertos) Ligados (i.e. a Web Semântica), novas oportunidades e desafios surgiram. Pergunta Resposta (QA) sobre informação semântica é actualmente uma área de investigação activa que tenta tirar vantagens do uso das tecnologias ligadas à Web Semântica para melhorar a tarefa de responder a questões. O principal objectivo do projecto World Search passa por explorar a Web Semântica para criar mecanismos que suportem os utilizadores de domínios de aplicação específicos a responder a questões complexas com base em dados oriundos de diferentes repositórios. No entanto, a avaliação feita ao estado da arte permite concluir que as aplicações existentes não suportam os utilizadores na resposta a questões complexas. Nesse sentido, o trabalho desenvolvido neste documento foca-se em estudar/desenvolver metodologias/processos que permitam ajudar os utilizadores a encontrar respostas exactas/corretas para questões complexas que não podem ser respondidas fazendo uso dos sistemas tradicionais. Tal inclui: (i) Ultrapassar a dificuldade dos utilizadores visionarem o esquema subjacente aos repositórios de conhecimento; (ii) Fazer a ponte entre a linguagem natural expressa pelos utilizadores e a linguagem (formal) entendível pelos repositórios; (iii) Processar e retornar informações relevantes que respondem apropriadamente às questões dos utilizadores. Para esse efeito, são identificadas um conjunto de funcionalidades que são consideradas necessárias para suportar o utilizador na resposta a questões complexas. É também fornecida uma descrição formal dessas funcionalidades. A proposta é materializada num protótipo que implementa as funcionalidades previamente descritas. As experiências realizadas com o protótipo desenvolvido demonstram que os utilizadores efectivamente beneficiam das funcionalidades apresentadas: ▪ Pois estas permitem que os utilizadores naveguem eficientemente sobre os repositórios de informação; ▪ O fosso entre as conceptualizações dos diferentes intervenientes é minimizado; ▪ Os utilizadores conseguem responder a questões complexas que não conseguiam responder com os sistemas tradicionais. Em suma, este documento apresenta uma proposta que comprovadamente permite, de forma orientada pelo utilizador, responder a questões complexas em repositórios semiestruturados.
Resumo:
This is a Named Entity Based Question Answering System for Malayalam Language. Although a vast amount of information is available today in digital form, no effective information access mechanism exists to provide humans with convenient information access. Information Retrieval and Question Answering systems are the two mechanisms available now for information access. Information systems typically return a long list of documents in response to a user’s query which are to be skimmed by the user to determine whether they contain an answer. But a Question Answering System allows the user to state his/her information need as a natural language question and receives most appropriate answer in a word or a sentence or a paragraph. This system is based on Named Entity Tagging and Question Classification. Document tagging extracts useful information from the documents which will be used in finding the answer to the question. Question Classification extracts useful information from the question to determine the type of the question and the way in which the question is to be answered. Various Machine Learning methods are used to tag the documents. Rule-Based Approach is used for Question Classification. Malayalam belongs to the Dravidian family of languages and is one of the four major languages of this family. It is one of the 22 Scheduled Languages of India with official language status in the state of Kerala. It is spoken by 40 million people. Malayalam is a morphologically rich agglutinative language and relatively of free word order. Also Malayalam has a productive morphology that allows the creation of complex words which are often highly ambiguous. Document tagging tools such as Parts-of-Speech Tagger, Phrase Chunker, Named Entity Tagger, and Compound Word Splitter are developed as a part of this research work. No such tools were available for Malayalam language. Finite State Transducer, High Order Conditional Random Field, Artificial Immunity System Principles, and Support Vector Machines are the techniques used for the design of these document preprocessing tools. This research work describes how the Named Entity is used to represent the documents. Single sentence questions are used to test the system. Overall Precision and Recall obtained are 88.5% and 85.9% respectively. This work can be extended in several directions. The coverage of non-factoid questions can be increased and also it can be extended to include open domain applications. Reference Resolution and Word Sense Disambiguation techniques are suggested as the future enhancements
Resumo:
With the recent rapid growth of the Semantic Web (SW), the processes of searching and querying content that is both massive in scale and heterogeneous have become increasingly challenging. User-friendly interfaces, which can support end users in querying and exploring this novel and diverse, structured information space, are needed to make the vision of the SW a reality. We present a survey on ontology-based Question Answering (QA), which has emerged in recent years to exploit the opportunities offered by structured semantic information on the Web. First, we provide a comprehensive perspective by analyzing the general background and history of the QA research field, from influential works from the artificial intelligence and database communities developed in the 70s and later decades, through open domain QA stimulated by the QA track in TREC since 1999, to the latest commercial semantic QA solutions, before tacking the current state of the art in open user-friendly interfaces for the SW. Second, we examine the potential of this technology to go beyond the current state of the art to support end-users in reusing and querying the SW content. We conclude our review with an outlook for this novel research area, focusing in particular on the R&D directions that need to be pursued to realize the goal of efficient and competent retrieval and integration of answers from large scale, heterogeneous, and continuously evolving semantic sources.
Resumo:
Linked Data semantic sources, in particular DBpedia, can be used to answer many user queries. PowerAqua is an open multi-ontology Question Answering (QA) system for the Semantic Web (SW). However, the emergence of Linked Data, characterized by its openness, heterogeneity and scale, introduces a new dimension to the Semantic Web scenario, in which exploiting the relevant information to extract answers for Natural Language (NL) user queries is a major challenge. In this paper we discuss the issues and lessons learned from our experience of integrating PowerAqua as a front-end for DBpedia and a subset of Linked Data sources. As such, we go one step beyond the state of the art on end-users interfaces for Linked Data by introducing mapping and fusion techniques needed to translate a user query by means of multiple sources. Our first informal experiments probe whether, in fact, it is feasible to obtain answers to user queries by composing information across semantic sources and Linked Data, even in its current form, where the strength of Linked Data is more a by-product of its size than its quality. We believe our experiences can be extrapolated to a variety of end-user applications that wish to scale, open up, exploit and re-use what possibly is the greatest wealth of data about everything in the history of Artificial Intelligence. © 2010 Springer-Verlag.
Resumo:
The semantic web vision is one in which rich, ontology-based semantic markup will become widely available. The availability of semantic markup on the web opens the way to novel, sophisticated forms of question answering. AquaLog is a portable question-answering system which takes queries expressed in natural language and an ontology as input, and returns answers drawn from one or more knowledge bases (KBs). We say that AquaLog is portable because the configuration time required to customize the system for a particular ontology is negligible. AquaLog presents an elegant solution in which different strategies are combined together in a novel way. It makes use of the GATE NLP platform, string metric algorithms, WordNet and a novel ontology-based relation similarity service to make sense of user queries with respect to the target KB. Moreover it also includes a learning component, which ensures that the performance of the system improves over the time, in response to the particular community jargon used by end users.
Resumo:
Nowadays the idea of injecting world or domain-specific structured knowledge into pre-trained language models (PLMs) is becoming an increasingly popular approach for solving problems such as biases, hallucinations, huge architectural sizes, and explainability lack—critical for real-world natural language processing applications in sensitive fields like bioinformatics. One recent work that has garnered much attention in Neuro-symbolic AI is QA-GNN, an end-to-end model for multiple-choice open-domain question answering (MCOQA) tasks via interpretable text-graph reasoning. Unlike previous publications, QA-GNN mutually informs PLMs and graph neural networks (GNNs) on top of relevant facts retrieved from knowledge graphs (KGs). However, taking a more holistic view, existing PLM+KG contributions mainly consider commonsense benchmarks and ignore or shallowly analyze performances on biomedical datasets. This thesis start from a propose of a deep investigation of QA-GNN for biomedicine, comparing existing or brand-new PLMs, KGs, edge-aware GNNs, preprocessing techniques, and initialization strategies. By combining the insights emerged in DISI's research, we introduce Bio-QA-GNN that include a KG. Working with this part has led to an improvement in state-of-the-art of MCOQA model on biomedical/clinical text, largely outperforming the original one (+3.63\% accuracy on MedQA). Our findings also contribute to a better understanding of the explanation degree allowed by joint text-graph reasoning architectures and their effectiveness on different medical subjects and reasoning types. Codes, models, datasets, and demos to reproduce the results are freely available at: \url{https://github.com/disi-unibo-nlp/bio-qagnn}.
Resumo:
In this paper, we list some new orthogonal main effects plans for three-level designs for 4, 5 and 6 factors in IS runs and compare them with designs obtained from the existing L-18 orthogonal array. We show that these new designs have better projection properties and can provide better parameter estimates for a range of possible models. Additionally, we study designs in other smaller run-sizes when there are insufficient resources to perform an 18-run experiment. Plans for three-level designs for 4, 5 and 6 factors in 13 to 17 runs axe given. We show that the best designs here are efficient and deserve strong consideration in many practical situations.
Resumo:
Several pixel-based people counting methods have been developed over the years. Among these the product of scale-weighted pixel sums and a linear correlation coefficient is a popular people counting approach. However most approaches have paid little attention to resolving the true background and instead take all foreground pixels into account. With large crowds moving at varying speeds and with the presence of other moving objects such as vehicles this approach is prone to problems. In this paper we present a method which concentrates on determining the true-foreground, i.e. human-image pixels only. To do this we have proposed, implemented and comparatively evaluated a human detection layer to make people counting more robust in the presence of noise and lack of empty background sequences. We show the effect of combining human detection with a pixel-map based algorithm to i) count only human-classified pixels and ii) prevent foreground pixels belonging to humans from being absorbed into the background model. We evaluate the performance of this approach on the PETS 2009 dataset using various configurations of the proposed methods. Our evaluation demonstrates that the basic benchmark method we implemented can achieve an accuracy of up to 87% on sequence ¿S1.L1 13-57 View 001¿ and our proposed approach can achieve up to 82% on sequence ¿S1.L3 14-33 View 001¿ where the crowd stops and the benchmark accuracy falls to 64%.
Resumo:
In this correspondence new robust nonlinear model construction algorithms for a large class of linear-in-the-parameters models are introduced to enhance model robustness via combined parameter regularization and new robust structural selective criteria. In parallel to parameter regularization, we use two classes of robust model selection criteria based on either experimental design criteria that optimizes model adequacy, or the predicted residual sums of squares (PRESS) statistic that optimizes model generalization capability, respectively. Three robust identification algorithms are introduced, i.e., combined A- and D-optimality with regularized orthogonal least squares algorithm, respectively; and combined PRESS statistic with regularized orthogonal least squares algorithm. A common characteristic of these algorithms is that the inherent computation efficiency associated with the orthogonalization scheme in orthogonal least squares or regularized orthogonal least squares has been extended such that the new algorithms are computationally efficient. Numerical examples are included to demonstrate effectiveness of the algorithms.
Resumo:
This work presents a methodology for elastic-plastic fracture reliability analysis of plane and axisymmetric structures. The structural reliability analysis is accomplished by means of the FORM analytical method. The virtual crack extension technique based on a direct minimization of potencial energy is utililized for the calculation of the energy release rate. Results are presented to illustrate the performance of the adopted methodology.
Resumo:
Existing models estimating oil spill costs at sea are based on data from the past, and they usually lack a systematic approach. This make them passive, and limits their ability to forecast the effect of the changes in the oil combating fleet or location of a spill on the oil spill costs. In this paper we make an attempt towards the development of a probabilistic and systematic model estimating the costs of clean-up operations for the Gulf of Finland. For this purpose we utilize expert knowledge along with the available data and information from literature. Then, the obtained information is combined into a framework with the use of a Bayesian Belief Networks. Due to lack of data, we validate the model by comparing its results with existing models, with which we found good agreement. We anticipate that the presented model can contribute to the cost-effective oil-combating fleet optimization for the Gulf of Finland. It can also facilitate the accident consequences estimation in the framework of formal safety assessment (FSA).
Resumo:
The problem of interdependence between housing and commuting in a city has been analysed within the framework of welfare economics. Uncertain changes overtime in the working population has been considered by means of a dynamic, probabilistic model. The characteristics of irreversibility and durability in city building have been explicitly dealt with. The ultimate objective is that the model after further development will be an auxiliary tool in city planning.