993 resultados para Road construction
Resumo:
Capacity is affected by construction type and its intensity on adjacent open traffic lanes. The effect on capacity is a function of vehicles moving in and out of the closed lanes of the work zone, and the presence of heavy construction vehicles. Construction activity and its intensity, however, are not commonly considered in estimating capacity of a highway lane. The main purpose of this project was to attempt to quantify the effects of construction type and intensity (e.g. maintenance, rehabilitation, reconstruction, and milling) on work zone capacity. The objective of this project is to quantify the effects of construction type and its intensity on work zone capacity and to develop guidelines for MoDOT to estimate the specific operation type and intensity that will improve the traffic flow by reducing the traffic flow and queue length commonly associated with work zones. Despite the effort put into field data collection, the data collected did not show a full speed-flow chart therefore extracting a reliable capacity value was difficult. A statistical comparison between the capacity values found in this study using either methodologies indicates that there is an effect of construction activity on the values work zone capacity. It was found that the heavy construction activity reduces the capacity. It is very beneficial to conduct similar studies on the capacity of work zone with different lane closure barriers, which is also directly related to the type of work zone being short-term or long-term work zones. Also, the effect of different geometric and environmental characteristics of the roadway should be considered in future studies.
Resumo:
L’obiettivo del progetto è stato quello di realizzare ed analizzare aggregati artificiali creati attraverso geopolimerizzazione e macro-incapsulazione di paraffina in aggregati leggeri espansi, discutendo i loro possibili impieghi nelle pavimentazioni stradali. Dopo un'accurata calibrazione delle miscele geopolimeriche, sono stati realizzati degli aggregati artificiali, in seguito caratterizzati in accordo con la norma UNI EN 10343, con l'intento di sostituire materiali stradali vergini. Contemporaneamente, sono stati prodotti aggregati leggeri impregnati di paraffina (PCM), in grado di cambiare fase una volta raggiunti all'incirca i 3 °C, e successivamente rivestiti da due strati di resina poliestere e polvere di granito, denominati PLA: sfruttandone le proprietà termiche, si è valutato il loro possibile utilizzo come soluzione anti-icing. L’ultima fase della ricerca è stata incentrata nella realizzazione di aggregati geopolimerici espansi e molto porosi che potessero contenere una elevata quantità di PCM, sostituendo l'argilla espansa utilizzata nella produzione degli PLA.
Resumo:
A project to show whether a Warranty or Non-Warranty option would end up cheaper in twenty years.
Resumo:
Mode of access: Internet.
Resumo:
"Report no. 1610 GOI 18/71."
Resumo:
Cover title.
Resumo:
"March 1999."
Resumo:
Several roads in Iceland with bio-oil modified surface dressings exhibited severe distresses such as bleeding, binder drain down, and eventually as surface dressing sticking to tires. Samples from six road sections were evaluated in the laboratory to determine the causes of the failure. Binders with and without bio-oil, rapeseed oil and fish oil, were evaluated through a comprehensive rheological and chemical characterization. Both oils, exhibited solubility issues with the bitumen; consequently, the oils covered the aggregates, preventing bonding between binder and stones. It appears that fish oil worked a little better than rapeseed oil for binder modification.
Resumo:
"Supplemental specifications. Addenda and amendments to 1959 edition of Standard specifications ..." (1 v. (loose leaf)), issued 1959.
Resumo:
The BPR type Roughometer has been used by the Iowa State Highway Commission since 1955 for the evaluation of the relative roughness of the various Iowa road surfaces. Since the commencement of this program, standardized information about the roughness of the various Iowa roads with respect to their type, construction, location and usage has been obtained. The Roughometer has also served to improve the economics and quality of road construction by making the roughness results of various practices available to all who are interested. In 1965, the Portland Cement Association developed a device known as the PCA Road Meter for measuring road roughness. Mounted in a regular passenger car, the Road Meter is a simple electromechanical device of durable construction which can perform consistently with extremely low maintenance. In 1967, the Iowa State Highway Commission's Laboratory constructed a P.C.A. type Road Meter in order to provide an efficient and reliable method for measuring the Present Serviceability Index for the state's highways. Another possibility was that after considerable testing the Road Meter might eventually replace the Roughometer. Some advantages of the Road Meter over the Roughometer are: (1) Road Meter tests are made by the automobile driver and one assistant without the need of traffic protection. The Roughometer has a crew of four men; two operating the roughometer and two driving safety vehicles. (2) The Road Meter is able to do more miles of testing because of its faster testing speed and the fa.ct that it is the only vehicle involved in the testing. (3) Because of the faster testing speed, the Road Meter gives a better indication of how the road actually rides to the average highway traveler. (4) The cost of operating a Road Meter is less than that of a Roughometer because of the fewer number of vehicles and men needed in testing.
Resumo:
Several road construction projects involving concrete overlays at the state and county levels in Iowa in 2009 were studied for construction techniques and methods. The projects that were evaluated consisted of sites in four Iowa counties: Osceola, Worth, Poweshiek, and Johnson counties. The construction techniques and methods that were studied included concrete overlays and material usage. By evaluating these methods, highway agencies can explore different ways of making road construction less costly and can minimize the amount of time that the traveling public is exposed to road construction.
Resumo:
Fly ash, a by-product of coal-fired electricity generating plants, has for years been promoted as a material suitable for highway construction. Disposal of the large quantities of fly ash produced is expensive and creates environmental concerns. The pozzolanic properties make it promotable as a partial Portland cement replacement in pc concrete, a stabilizer for soil and aggregate in embankments and road bases, and a filler material in grout. Stabilizing soils and aggregates for road construction has the potential of using large quantities of fly ash. Iowa Highway Research Board Project HR-194, "Mission-Oriented Dust Control and Surface Improvement Processes for Unpaved Roads", included short test sections of cement, fly ash, and salvaged granular road material mixed for a base in western Iowa. The research showed that cement fly ash aggregate (CFA) has promise as a stabilizing agent in Iowa. There are several sources of sand that when mixed with fly ash may attain strengths much greater than fly ash mixed with salvaged granular road material at little additional cost
Resumo:
The cost of a road construction over its service life is a function of the design, quality of construction, maintenance strategies and maintenance operations. Unfortunately, designers often neglect a very important aspect which is the possibility to perform future maintenance activities. The focus is mainly on other aspects such as investment costs, traffic safety, aesthetic appearance, regional development and environmental effects. This licentiate thesis is a part of a Ph.D. project entitled “Road Design for lower maintenance costs” that aims to examine how the life-cycle costs can be optimized by selection of appropriate geometrical designs for the roads and their components. The result is expected to give a basis for a new method used in the road planning and design process using life-cycle cost analysis with particular emphasis on road maintenance. The project started with a review of literature with the intention to study conditions causing increased needs for road maintenance, the efforts made by the road authorities to satisfy those needs and the improvement potential by consideration of maintenance aspects during planning and design. An investigation was carried out to identify the problems which obstruct due consideration of maintenance aspects during the road planning and design process. This investigation focused mainly on the road planning and design process at the Swedish Road Administration. However, the road planning and design process in Denmark, Finland and Norway were also roughly evaluated to gain a broader knowledge about the research subject. The investigation was carried out in two phases: data collection and data analysis. Data was collected by semi-structured interviews with expert actors involved in planning, design and maintenance and by a review of design-related documents. Data analyses were carried out using a method called “Change Analysis”. This investigation revealed a complex combination of problems which result in inadequate consideration of maintenance aspects. Several urgent needs for changes to eliminate these problems were identified. Another study was carried out to develop a model for calculation of the repair costs for damages of different road barrier types and to analyse how factors such as road type, speed limits, barrier types, barrier placement, type of road section, alignment and seasonal effects affect the barrier damages and the associated repair costs. This study was carried out using a method called the “Case Study Research Method”. Data was collected from 1087 barrier repairs in two regional offices of the Swedish Road Administration, the Central Region and the Western Region. A table was established for both regions containing the repair cost per vehicle kilometre for different combinations of barrier types, road types and speed limits. This table can be used by the designers in the calculation of the life-cycle costs for different road barrier types.
Resumo:
The cost of a road construction over its service life is a function of design, quality of construction as well as maintenance strategies and operations. An optimal life-cycle cost for a road requires evaluations of the above mentioned components. Unfortunately, road designers often neglect a very important aspect, namely, the possibility to perform future maintenance activities. Focus is mainly directed towards other aspects such as investment costs, traffic safety, aesthetic appearance, regional development and environmental effects. This doctoral thesis presents the results of a research project aimed to increase consideration of road maintenance aspects in the planning and design process. The following subgoals were established: Identify the obstacles that prevent adequate consideration of future maintenance during the road planning and design process; and Examine optimisation of life-cycle costs as an approach towards increased efficiency during the road planning and design process. The research project started with a literature review aimed at evaluating the extent to which maintenance aspects are considered during road planning and design as an improvement potential for maintenance efficiency. Efforts made by road authorities to increase efficiency, especially maintenance efficiency, were evaluated. The results indicated that all the evaluated efforts had one thing in common, namely ignorance of the interrelationship between geometrical road design and maintenance as an effective tool to increase maintenance efficiency. Focus has mainly been on improving operating practises and maintenance procedures. This fact might also explain why some efforts to increase maintenance efficiency have been less successful. An investigation was conducted to identify the problems and difficulties, which obstruct due consideration of maintainability during the road planning and design process. A method called “Change Analysis” was used to analyse data collected during interviews with experts in road design and maintenance. The study indicated a complex combination of problems which result in inadequate consideration of maintenance aspects when planning and designing roads. The identified problems were classified into six categories: insufficient consulting, insufficient knowledge, regulations and specifications without consideration of maintenance aspects, insufficient planning and design activities, inadequate organisation and demands from other authorities. Several urgent needs for changes to eliminate these problems were identified. One of the problems identified in the above mentioned study as an obstacle for due consideration of maintenance aspects during road design was the absence of a model for calculating life-cycle costs for roads. Because of this lack of knowledge, the research project focused on implementing a new approach for calculating and analysing life-cycle costs for roads with emphasis on the relationship between road design and road maintainability. Road barriers were chosen as an example. The ambition is to develop this approach to cover other road components at a later stage. A study was conducted to quantify repair rates for barriers and associated repair costs as one of the major maintenance costs for road barriers. A method called “Case Study Research Method” was used to analyse the effect of several factors on barrier repairs costs, such as barrier type, road type, posted speed and seasonal effect. The analyses were based on documented data associated with 1625 repairs conducted in four different geographical regions in Sweden during 2006. A model for calculation of average repair costs per vehicle kilometres was created. Significant differences in the barrier repair costs were found between the studied barrier types. In another study, the injuries associated with road barrier collisions and the corresponding influencing factors were analysed. The analyses in this study were based on documented data from actual barrier collisions between 2005 and 2008 in Sweden. The result was used to calculate the cost for injuries associated with barrier collisions as a part of the socio-economic cost for road barriers. The results showed significant differences in the number of injuries associated with collisions with different barrier types. To calculate and analyse life-cycle costs for road barriers a new approach was developed based on a method called “Activity-based Life-cycle Costing”. By modelling uncertainties, the presented approach gives a possibility to identify and analyse factors crucial for optimising life-cycle costs. The study showed a great potential to increase road maintenance efficiency through road design. It also showed that road components with low investment costs might not be the best choice when including maintenance and socio-economic aspects. The difficulties and problems faced during the collection of data for calculating life-cycle costs for road barriers indicated a great need for improving current data collecting and archiving procedures. The research focused on Swedish road planning and design. However, the conclusions can be applied to other Nordic countries, where weather conditions and road design practices are similar. The general methodological approaches used in this research project may be applied also to other studies.