117 resultados para Rhoa


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secretion of proinflammatory cytokines by LPS activated endothelial cells contributes substantially to the pathogenesis of sepsis. However, the mechanism involved in this process is not well understood. In the present study, we determined the roles of GEF-H1 (Guanine-nucleotide exchange factor-H1)-RhoA signalling in LPS-induced interleukin-8 (IL-8, CXCL8) production in endothelial cells. First, we observed that GEF-H1 expression was upregulated in a dose- and time-dependent manner as consistent with TLR4 (Toll-like receptor 4) expression after LPS stimulation. Afterwards, Clostridium difficile toxin B-10463 (TcdB-10463), an inhibitor of Rho activities, reduced LPS-induced NF-κB phosphorylation. Inhibition of GEF-H1 and RhoA expression reduced LPS-induced NF-κB and p38 phosphorylation. TLR4 knockout blocked LPS-induced activity of RhoA, however, MyD88 knockout did not impair the LPS-induced activity of RhoA. Nevertheless, TLR4 and MyD88 knockout both significantly inhibited transactivation of NF-κB. GEF-H1-RhoA and MyD88 both induced significant changes in NF-κB transactivation and IL-8 synthesis. Co-inhibition of GEF-H1-RhoA and p38 expression produced similar inhibitory effects on LPS-induced NF-κB transactivation and IL-8 synthesis as inhibition of p38 expression alone, thus confirming that activation of p38 was essential for the GEF-H1-RhoA signalling pathway to induce NF-κB transactivation and IL-8 synthesis. Taken together, these results demonstrate that LPS-induced NF-κB activation and IL-8 synthesis in endothelial cells are regulated by the MyD88 pathway and GEF-H1-RhoA pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We found that engagement of beta 2 integrins on human neutrophils induced activation of RhoA, as indicated by the increased ratio of GTP:GTP 1 GDP recovered on RhoA and translocation of RhoA to a membrane fraction. The clustering of beta 2 integrins also induced a time-dependent increase in GDP bound to RhoA, which correlated with beta 2 integrin-induced activation of p190RhoGAP. The activation of p190RhoGAP was completely blocked by [4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine] (PP1), a selective inhibitor of Src family tyrosine kinases. However, clustering of beta 2 integrins did not increase the basal tyrosine phosphorylation of p190RhoGAP, nor did it affect the amount of p120RasGAP bound to p190RhoGAP. Instead, the beta 2 integrin-induced activation of p190RhoGAP was accompanied by increased tyrosine phosphorylation of a p190RhoGAP-associated protein, p120RasGAP, and accumulation of both p120RasGAP and p190RhoGAP in a membrane fraction. PP1 blocked the beta 2 integrin-induced phosphorylation of p120RasGAP, as well as the translocation of p190RhoGAP and p120RasGAP, but it did not affect the accumulation of RhoA in the membrane fraction. In agreement with the mentioned findings, PP1 also increased the GTP:GTP 1 GDP ratio recovered on RhoA immunoprecipitated from beta2 integrin-stimulated cells. Thus, in neutrophils, beta 2 integrin-induced activation of p190RhoGAP requires a signal from a Src family tyrosine kinase, but it does not occur via the signaling pathway responsible for activation of RhoA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Critically ill patients are at heightened risk for nosocomial infections. The anaphylatoxin C5a impairs phagocytosis by neutrophils. However, the mechanisms by which this occurs and the relevance for acquisition of nosocomial infection remain undetermined. We aimed to characterize mechanisms by which C5a inhibits phagocytosis in vitro and in critically ill patients, and to define the relationship between C5a-mediated dysfunction and acquisition of nosocomial infection. In healthy human neutrophils, C5a significantly inhibited RhoA activation, preventing actin polymerization and phagocytosis. RhoA inhibition was mediated by PI3Kd. The effects on RhoA, actin, and phagocytosis were fully reversed by GM-CSF. Parallel observations were made in neutrophils from critically ill patients, that is, impaired phagocytosis was associated with inhibition of RhoA and actin polymerization, and reversed by GM-CSF. Among a cohort of 60 critically ill patients, C5a-mediated neutrophil dysfunction (as determined by reduced CD88 expression) was a strong predictor for subsequent acquisition of nosocomial infection (relative risk, 5.8; 95% confidence interval, 1.5-22; P = .0007), and remained independent of time effects as assessed by survival analysis (hazard ratio, 5.0; 95% confidence interval, 1.3-8.3; P = .01). In conclusion, this study provides new insight into the mechanisms underlying immunocompromise in critical illness and suggests novel avenues for therapy and prevention of nosocomial infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Astrocytic tumors are the most common intracranial neoplasms. Their prognoses correlate with a conventional morphological grading system that suffers from diagnostic subjectivity and hence, inter-observer inconsistency. A molecular marker that provides an objective reference for classification and prognostication of astrocytic tumors would be useful in diagnostic pathology. RhoA, a GTPase protein involved in cell migration and adhesion has been shown to be upregulated in a variety of human cancers. Based on direct analysis of clinical materials, our study demonstrates increased expression of RhoA in high-grade astrocytomas. This observation may be relevant to astrocytoma biology and the development of potential therapeutics against high-grade astrocytomas. Of more immediate consequence, utilization of this marker may aid in the routine pathological grading (and hence prognostication) of astrocytomas. (c) 2006 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stroke patients with hyperglycemia (HG) develop higher volumes of brain edema emerging from disruption of blood-brain barrier (BBB). This study explored whether inductions of protein kinase C-β (PKC-β) and RhoA/Rho-kinase/myosin-regulatory light chain-2 (MLC2) pathway may account for HG-induced barrier damage using an in vitro model of human BBB comprising human brain microvascular endothelial cells (HBMEC) and astrocytes. Hyperglycemia (25 mmol/L D-glucose) markedly increased RhoA/Rho-kinase protein expressions (in-cell westerns), MLC2 phosphorylation (immunoblotting), and PKC-β (PepTag assay) and RhoA (Rhotekin-binding assay) activities in HBMEC while concurrently reducing the expression of tight junction protein occludin. Hyperglycemia-evoked in vitro barrier dysfunction, confirmed by decreases in transendothelial electrical resistance and concomitant increases in paracellular flux of Evan's blue-labeled albumin, was accompanied by malformations of actin cytoskeleton and tight junctions. Suppression of RhoA and Rho-kinase activities by anti-RhoA immunoglobulin G (IgG) electroporation and Y-27632, respectively prevented morphologic changes and restored plasma membrane localization of occludin. Normalization of glucose levels and silencing PKC-β activity neutralized the effects of HG on occludin and RhoA/Rho-kinase/MLC2 expression, localization, and activity and consequently improved in vitro barrier integrity and function. These results suggest that HG-induced exacerbation of the BBB breakdown after an ischemic stroke is mediated in large part by activation of PKC-β.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Enhanced vascular permeability attributable to disruption of blood-brain barrier results in the development of cerebral edema after stroke. Using an in vitro model of the brain barrier composed of human brain microvascular endothelial cells and human astrocytes, this study explored whether small GTPase RhoA and its effector protein Rho kinase were involved in permeability changes mediated by oxygen-glucose deprivation (OGD), key pathological phenomena during ischemic stroke.

METHODS: OGD increased RhoA and Rho kinase protein expressions in human brain microvascular endothelial cells and human astrocytes while increasing or unaffecting that of endothelial nitric oxide synthase in respective cells. Reperfusion attenuated the expression and activity of RhoA and Rho kinase in both cell types compared to their counterparts exposed to equal periods of OGD alone while selectively increasing human brain microvascular endothelial cells endothelial nitric oxide synthase protein levels. OGD compromised the barrier integrity as confirmed by decreases in transendothelial electric resistance and concomitant increases in flux of permeability markers sodium fluorescein and Evan's blue albumin across cocultures. Transfection of cells with constitutively active RhoA also increased flux and reduced transendothelial electric resistance, whereas inactivation of RhoA by anti-RhoA Ig electroporation exerted opposite effects. In vitro cerebral barrier dysfunction was accompanied by myosin light chain overphosphorylation and stress fiber formation. Reperfusion and treatments with a Rho kinase inhibitor Y-27632 significantly attenuated barrier breakdown without profoundly altering actin structure.

CONCLUSIONS: Increased RhoA/Rho kinase/myosin light chain pathway activity coupled with changes in actin cytoskeleton account for OGD-induced endothelial barrier breakdown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Morphogenesis and cytodifferentiation are distinct processes in tooth development. Cell proliferation predominates in morphogenesis; differentiation involves changes in form and gene expression. The cytoskeleton is essential for both processes, being regulated by Rho GTPases. The aim of this study was to verify the expression, distribution, and role of Rho GTPases in ameloblasts and odontoblasts during tooth development in correlation with actin and tubulin arrangements and amelogenin and dentin sialophosphoprotein (DSPP) expression. RhoA, Rac1, and Cdc42 were strongly expressed during morphogenesis; during cytodifferentiation, RhoA was present in ameloblasts and odontoblasts, Rac1 and its effector Pak3 were observed in ameloblasts; and Cdc42 was present in all cells of the tooth germ and mesenchyme. The expression of RhoA mRNA and its effectors RockI and RockII, Rac1 and Pak3, as analyzed by real-time polymerase chain reaction, increased after ameloblast and odontoblast differentiation, according to the mRNA expression of amelogenin and DSPP. The inhibition of all Rho GTPases by Clostridium difficile toxin A completely abolished amelogenin and DSPP expression in tooth germs cultured in anterior eye chamber, whereas the specific inhibition of the Rocks showed only a partial effect. Thus, both GTPases are important during tooth morphogenesis. During cytodifferentiation, Rho proteins are essential for the complete differentiation of ameloblasts and odontoblasts by regulating the expression of amelogenin and DSPP. RhoA and its effector RockI contribute to this role. A specific function for Rac1 in ameloblasts remains to be elucidated; its punctate distribution indicates its possible role in exocytosis/endocytosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims Glycosylation with beta-N-acetylglucosamine (O-GlcNAcylation) is one of the most complex post-translational modifications. The cycling of O-GlcNAc is controlled by two enzymes: UDP-NAc transferase (OGT) and O-GlcNAcase (OGA). We recently reported that endothelin-1 (ET-1) augments vascular levels of O-GlcNAcylated proteins. Here we tested the hypothesis that O-GlcNAcylation contributes to the vascular effects of ET-1 via activation of the RhoA/Rho-kinase pathway. Methods and results Incubation of vascular smooth muscle cells (VSMCs) with ET-1 (0.1 mu M) produces a time-dependent increase in O-GlcNAc levels. ET-1-induced O-GlcNAcylation is not observed when VSMCs are previously transfected with OGT siRNA, treated with ST045849 (OGT inhibitor) or atrasentan (ET(A) antagonist). ET-1 as well as PugNAc (OGA inhibitor) augmented contractions to phenylephrine in endothelium-denuded rat aortas, an effect that was abolished by the Rho kinase inhibitor Y-27632. Incubation of VSMCs with ET-1 increased expression of the phosphorylated forms of myosin phosphatase target subunit 1 (MYPT-1), protein kinase C-potentiated protein phosphatase 1 inhibitor protein (protein kinase C-potentiated phosphatase inhibitor-17), and myosin light chain (MLC) and RhoA expression and activity, and this effect was abolished by both OGT siRNA transfection or OGT inhibition and atrasentan. ET-1 also augmented expression of PDZ-Rho GEF (guanine nucleotide exchange factor) and p115-Rho GEF in VSMCs and this was prevented by OGT siRNA, ST045849, and atrasentan. Conclusion We suggest that ET-1 augments O-GlcNAcylation and this modification contributes to increased vascular contractile responses via activation of the RhoA/Rho-kinase pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibroblast growth factor 2 (FGF2) is considered to be a bona fide oncogenic factor, although results from our group and others call this into question. Here, we report that exogenous recombinant FGF2 irreversibly inhibits proliferation by inducing senescence in Ras-dependent malignant mouse cells, but not in immortalized nontumorigenic cell lines. We report the following findings in K-Ras-dependent malignant YI adrenocortical cells and H-Ras V12-transformed BALB-3T3 fibroblasts: (a) FGF2 inhibits clonal growth and tumor onset in nude and immunocompetent BALB/c mice, (b) FGF2 irreversibly blocks the cell cycle, and (c) FGF2 induces the senescence-associated -galactosidase with no accompanying signs of apoptosis or necrosis. The tyrosine kinase inhibitor PD173074 completely protected malignant cells from FGF2. In Yl adrenal cells, reducing the constitutively high levels of K-Ras-GTP using the dominant-negative RasN17 mutant made cells resistant to FGF2 cytotoxicity. In addition, transfection of the dominant-negative RhoA-N19 into either YI or 3T3-B61 malignant cell lines yielded stable clonal transfectants that were unable to activate RhoA and were resistant to the FGF2 stress response. We conclude that in Rasdependent malignant cells, FGF2 interacts with its cognate receptors to trigger a senescence-like process involving RboAGTP. Surprisingly, attempts to select FGF2-resistant cells from the Yl and 3T3-B61 cell lines yielded only rare clones that (a) had lost the overexpressed ras oncogene, (b) were dependent on FGF2 for proliferation, and (c) were poorly tumorigenic. Thus, FGF2 exerted a strong negative selection that Rasdependent malignant cells could rarely overcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcific aortic valve disease (CAVD) is a chronic disorder characterized by an abnormal mineralization of the leaflets, which is accelerated in bicuspid aortic valve (BAV). It is suspected that mechanical strain may promote/enhance mineralization of the aortic valve. However, the effect of mechanical strain and the involved pathways during mineralization of the aortic valve remains largely unknown. Valve interstitial cells (VICs) were isolated and studied under strain conditions. Human bicuspid aortic valves were examined as a model relevant to increase mechanical strain. Cyclic strain increased mineralization of VICs by several-fold. Scanning electron microscope (SEM) and energy dispersive X-ray (EDX) analyses revealed that mechanical strain promoted the formation of mineralized spheroid microparticles, which coalesced into larger structure at the surface of apoptotic VICs. Apoptosis and mineralization were closely associated with expression of ENPP1. Inhibition of ENPP1 greatly reduced mineralization of VIC cultures. Through several lines of evidence we showed that mechanical strain promoted the export of ENPP1-containing vesicles to the plasma membrane through a RhoA/ROCK pathway. Studies conducted in human BAV revealed the presence of spheroid mineralized structures along with the expression of ENPP1 in areas of high mechanical strain. Mechanical strain promotes the production and accumulation of spheroid mineralized microparticles by VICs, which may represent one important underlying mechanism involved in aortic valve mineralization. RhoA/ROCK-mediated export of ENPP1 to the plasma membrane promotes strain-induced mineralization of VICs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Programa de doctorado: Avances en Traumatología. Medicina del deporte. Cuidados de heridas

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To test the hypothesis that the pericellular fibronectin matrix is involved in mechanotransduction, we compared the response of normal and fibronectin-deficient mouse fibroblasts to cyclic substrate strain. Normal fibroblasts seeded on vitronectin in fibronectin-depleted medium deposited their own fibronectin matrix. In cultures exposed to cyclic strain, RhoA was activated, actin-stress fibers became more prominent, MAL/MKL1 shuttled to the nucleus, and mRNA encoding tenascin-C was induced. By contrast, these RhoA-dependent responses to cyclic strain were suppressed in fibronectin knockdown or knockout fibroblasts grown under identical conditions. On vitronectin substrate, fibronectin-deficient cells lacked fibrillar adhesions containing alpha5 integrin. However, when fibronectin-deficient fibroblasts were plated on exogenous fibronectin, their defects in adhesions and mechanotransduction were restored. Studies with fragments indicated that both the RGD-synergy site and the adjacent heparin-binding region of fibronectin were required for full activity in mechanotransduction, but not its ability to self-assemble. In contrast to RhoA-mediated responses, activation of Erk1/2 and PKB/Akt by cyclic strain was not affected in fibronectin-deficient cells. Our results indicate that pericellular fibronectin secreted by normal fibroblasts is a necessary component of the strain-sensing machinery. Supporting this hypothesis, induction of cellular tenascin-C by cyclic strain was suppressed by addition of exogenous tenascin-C, which interferes with fibronectin-mediated cell spreading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The regulation of cell morphology is a dynamic process under the control of multiple protein complexes acting in a coordinated manner. Phosphoinositide 3-kinases (PI3K) and their lipid products are widely involved in cytoskeletal regulation by interacting with proteins regulating RhoGTPases. Class II PI3K isoforms have been implicated in the regulation of the actin cytoskeleton, although their exact role and mechanism of action remain to be established. In this report, we have identified Dbl, a Rho family guanine nucleotide exchange factor (RhoGEF) as an interaction partner of PI3KC2β. Dbl was co-immunoprecipitated with PI3KC2β in NIH3T3 cells and cancer cell lines. Over-expression of Class II phosphoinositide 3-kinase PI3KC2β in NIH3T3 fibroblasts led to increased stress fibres formation and cell spreading. Accordingly, we found high basal RhoA activity and increased serum response factor (SRF) activation downstream of RhoA upon serum stimulation. In contrast, the dominant-negative form of PI3KC2β strongly reduced cell spreading and stress fibres formation, as well as SRF response. Platelet-derived growth factor (PDGF) stimulation of wild-type PI3KC2β over-expressing NIH3T3 cells strongly increased Rac and c-Jun N-terminal kinase (JNK) activation, but failed to show similar effect in the cells with the dominant-negative enzyme. Interestingly, epidermal growth factor (EGF) and PDGF stimulation led to increased extracellular signal-regulated kinase (Erk) and Akt pathway activation in cells with elevated wild-type PI3KC2β expression. Furthermore, increased expression of PI3KC2β protected NIH3T3 from detachment-dependent death (anoikis) in a RhoA-dependent manner. Taken together, these findings suggest that PI3KC2β modulates the cell morphology and survival through a specific interaction with Dbl and the activation of RhoA.