971 resultados para Reverse Monte Carlo
Resumo:
A model for the structure of amorphous molybdenum trisulfide, a-MoS3, has been created using reverse Monte Carlo methods. This model, which consists of chains Of MoS6 units sharing three sulfurs with each of its two neighbors and forming alternate long, nonbonded, and short, bonded, Mo-Mo separations, is a good fit to the neutron diffraction data and is chemically and physically realistic. The paper identifies the limitations of previous models based on Mo-3 triangular clusters in accounting for the available experimental data.
Resumo:
We present a new algorithm for Reverse Monte Carlo (RMC) simulations of liquids. During the simulations, we calculate energy, excess chemical potentials, bond-angle distributions and three-body correlations. This allows us to test the quality and physical meaning of RMC-generated results and its limitations. It also indicates the possibility to explore orientational correlations from simple scattering experiments. The new technique has been applied to bulk hard-sphere and Lennard-Jones systems and compared to standard Metropolis Monte Carlo results. (C) 1998 American Institute of Physics.
Resumo:
Using a new reverse Monte Carlo algorithm, we present simulations that reproduce very well several structural and thermodynamic properties of liquid water. Both Monte Carlo, molecular dynamics simulations and experimental radial distribution functions used as input are accurately reproduced using a small number of molecules and no external constraints. Ad hoc energy and hydrogen bond analysis show the physical consistency and limitations of the generated RMC configurations. (C) 2001 American Institute of Physics.
Resumo:
The reverse Monte Carlo (RMC) method generates sets of points in space which yield radial distribution functions (RDFS) that approximate those of the system of interest. Such sets of configurations should, in principle, be sufficient to determine the structural properties of the system. In this work we apply the RMC technique to fluids of hard diatomic molecules. The experimental RDFs of the hard-dimer fluid were generated by the conventional MC method and used as input in the RMC simulations. Our results indicate that the RMC method is only satisfactory in determining the local structure of the fluid studied by means of only mono-variable RDF. Also we suggest that the use of multi-variable RDFs would improve the technique significantly. However, the accuracy of the method turned out to be very sensitive to the variance of the input experimental RDF. © 1995.
Resumo:
We present results of the reconstruction of a saccharose-based activated carbon (CS1000a) using hybrid reverse Monte Carlo (HRMC) simulation, recently proposed by Opletal et al. [1]. Interaction between carbon atoms in the simulation is modeled by an environment dependent interaction potential (EDIP) [2,3]. The reconstructed structure shows predominance of sp(2) over sp bonding, while a significant proportion of sp(3) hybrid bonding is also observed. We also calculated a ring distribution and geometrical pore size distribution of the model developed. The latter is compared with that obtained from argon adsorption at 87 K using our recently proposed characterization procedure [4], the finite wall thickness (FWT) model. Further, we determine self-diffusivities of argon and nitrogen in the constructed carbon as functions of loading. It is found that while there is a maximum in the diffusivity with respect to loading, as previously observed by Pikunic et al. [5], diffusivities in the present work are 10 times larger than those obtained in the prior work, consistent with the larger pore size as well as higher porosity of the activated saccharose carbon studied here.
Resumo:
An improved Monte Carlo technique is presented in this work to simulate nanoparticle formation through a micellar route. The technique builds on the simulation technique proposed by Bandyopadhyaya et al. (Langmuir 2000, 16, 7139) which is general and rigorous but at the same time very computation intensive, so much so that nanoparticle formation in low occupancy systems cannot be simulated in reasonable time. In view of this, several strategies, rationalized by simple mathematical analyses, are proposed to accelerate Monte Carlo simulations. These are elimination of infructuous events, removal of excess reactant postreaction, and use of smaller micelle population a large number of times. Infructuous events include collision of an empty micelle with another empty one or with another one containing only one molecule or only a solid particle. These strategies are incorporated in a new simulation technique which divides the entire micelle population in four classes and shifts micelles from one class to other as the simulation proceeds. The simulation results, throughly tested using chi-square and other tests, show that the predictions of the improved technique remain unchanged, but with more than an order of magnitude decrease in computational effort for some of the simulations reported in the literature. A post priori validation scheme for the correctness of the simulation results has been utilized to propose a new simulation strategy to arrive at converged simulation results with near minimum computational effort.
Resumo:
The effects of radiation backscattered from the secondary collimators into the monitor chamber in an Elekta linac (producing 6 and 10 MV photon beams) are investigated using BEAMnrc Monte Carlo simulations. The degree and effects of this backscattered radiation are assessed by evaluating the changes to the calculated dose in the monitor chamber, and by determining a correction factor for those changes. Additionally, the fluency and energy characteristics of particles entering the monitor chamber from the downstream direction are evaluated by examining BEAMnrc phase-space data. It is shown that the proportion of particles backscattered into the monitor chamber is small (<0.35 %), for all field sizes studied. However, when the backscatter plate is removed from the model linac, these backscattered particles generate a noticeable increase in dose to the monitor chamber (up to approximate to 2.4 % for the 6 MV beam and up to 4.4 % for the 10 MV beam). With its backscatter plate in place, the Elekta linac (operating at 6 and 10 MV) is subject to negligible variation of monitor chamber dose with field size. At these energies, output variations in photon beams produced by the clinical Elekta linear accelerator can be attributed to head scatter alone. Corrections for field-size-dependence of monitor chamber dose are not necessary when running Monte Carlo simulations of the Elekta linac operating at 6 and 10 MV.
Resumo:
The population Monte Carlo algorithm is an iterative importance sampling scheme for solving static problems. We examine the population Monte Carlo algorithm in a simplified setting, a single step of the general algorithm, and study a fundamental problem that occurs in applying importance sampling to high-dimensional problem. The precision of the computed estimate from the simplified setting is measured by the asymptotic variance of estimate under conditions on the importance function. We demonstrate the exponential growth of the asymptotic variance with the dimension and show that the optimal covariance matrix for the importance function can be estimated in special cases.