92 resultados para Retrotransposons
Resumo:
Retrotransposons are a class of transposable elements that represent a major fraction of the repetitive DNA of most eukaryotes. Their abundance stems from their expansive replication strategies. We screened and isolated sequence fragments of long terminal repeat (LTR), gypsy-like reverse transcriptase (rt) and gypsy-like envelope (env) domains, and two partial sequences of non-LTR retrotransposons, long interspersed element (LINE), in the clonally propagated allohexaploid sweet potato (Ipomoea batatas (L.) Lam.) genome. Using dot-blot hybridization, these elements were found to be present in the ~1597 Mb haploid sweet potato genome with copy numbers ranging from ~50 to ~4100 as observed in the partial LTR (IbLtr-1) and LINE (IbLi-1) sequences, respectively. The continuous clonal propagation of sweet potato may have contributed to such a multitude of copies of some of these genomic elements. Interestingly, the isolated gypsy-like env and gypsy-like rt sequence fragments, IbGy-1 (~2100 copies) and IbGy-2 (~540 copies), respectively, were found to be homologous to the Bagy-2 cDNA sequences of barley (Hordeum vulgare L.). Although the isolated partial sequences were found to be homologous to other transcriptionally active elements, future studies are required to determine whether they represent elements that are transcriptionally active under normal and (or) stressful conditions.
Resumo:
Retrotransposons, which used to be considered as “junk DNA”, have begun to reveal their immense value to genome evolution and human biology due to recent studies. They consist of at least ~45% of the human genome and are more or less the same in other mammalian genomes. Retrotransposon elements (REs) are known to affect the human genome through many different mechanisms, such as generating insertion mutations, genomic instability, and alteration in gene expression. Previous studies have suggested several RE subfamilies, such as Alu, L1, SVA and LTR, are currently active in the human genome, and they are an important source of genetic diversity between human and other primates, as well as among humans. Although several groups had used Retrotransposon Insertion Polymorphisms (RIPs) as markers in studying primate evolutionary history, no study specifically focused on identifying Human-Specific Retrotransposon Element (HS-RE) and their roles in human genome evolution. In this study, by computationally comparing the human genome to 4 primate genomes, we identified a total of 18,860 HS-REs, among which are 11,664 Alus, 4,887 L1s, 1,526 SVAs and 783 LTRs (222 full length entries), representing the largest and most comprehensive list of HS-REs generated to date. Together, these HS-REs contributed a total of 14.2Mb sequence increase from the inserted REs and Target Site Duplications (TSDs), 71.6Kb increase from transductions, and 268.2 Kb sequence deletion of from insertion-mediated deletion, leading to a net increase of ~14 Mb sequences to the human genome. Furthermore, we observed for the first time that Y chromosome might be a hot target for new retrotransposon insertions in general and particularly for LTRs. The data also allowed for the first time the survey of frequency of TE insertions inside other TEs in comparison with TE insertion into none-TE regions. In summary, our data suggest that retrotransposon elements have played a significant role in the evolution of Homo sapiens.
Resumo:
A deeper understanding of random markers is important if they are to be employed for a range of objectives. The sequence specific amplified polymorphism (S-SAP) technique is a powerful genetic analysis tool which exploits the high copy number of retrotransposon long terminal repeats (LTRs) in the plant genome. The distribution and inheritance of S-SAP bands in the barley genome was studied using the Steptoe × Morex (S × M) double haploid (DH) population. Six S-SAP primer combinations generated 98 polymorphic bands, and map positions were assigned to all but one band. Eight putative co-dominant loci were detected, representing 16 of the mapped markers. Thus at least 81 of the mapped S-SAP loci were dominant. The markers were distributed along all of the seven chromosomes and a tendency to cluster was observed. The distribution of S-SAP markers over the barley genome concurred with the knowledge of the high copy number of retrotransposons in plants. This experiment has demonstrated the potential for the S-SAP technique to be applied in a range of analyses such as genetic fingerprinting, marker assisted breeding, biodiversity assessment and phylogenetic analyses.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Sugarcane is an important crop worldwide for sugar production and increasingly, as a renewable energy source. Modern cultivars have polyploid, large complex genomes, with highly unequal contributions from ancestral genomes. Long Terminal Repeat retrotransposons (LTR-RTs) are the single largest components of most plant genomes and can substantially impact the genome in many ways. It is therefore crucial to understand their contribution to the genome and transcriptome, however a detailed study of LTR-RTs in sugarcane has not been previously carried out. Results: Sixty complete LTR-RT elements were classified into 35 families within four Copia and three Gypsy lineages. Structurally, within lineages elements were similar, between lineages there were large size differences. FISH analysis resulted in the expected pattern of Gypsy/heterochromatin, Copia/euchromatin, but in two lineages there was localized clustering on some chromosomes. Analysis of related ESTs and RT-PCR showed transcriptional variation between tissues and families. Four distinct patterns were observed in sRNA mapping, the most unusual of which was that of Ale1, with very large numbers of 24nt sRNAs in the coding region. The results presented support the conclusion that distinct small RNA-regulated pathways in sugarcane target the lineages of LTR-RT elements. Conclusions: Individual LTR-RT sugarcane families have distinct structures, and transcriptional and regulatory signatures. Our results indicate that in sugarcane individual LTR-RT families have distinct behaviors and can potentially impact the genome in diverse ways. For instance, these transposable elements may affect nearby genes by generating a diverse set of small RNA's that trigger gene silencing mechanisms. There is also some evidence that ancestral genomes contribute significantly different element numbers from particular LTR-RT lineages to the modern sugarcane cultivar genome.
Resumo:
Five retrotransposon families of rice (Tos1-Tos5) have been reported previously. Here we report 15 new retrotransposon families of rice (Tos6-Tos20). In contrast to yeast and Drosophila retrotransposons, all of the rice retrotransposons examined appear inactive (or almost inactive) under normal growth conditions. Three of the rice retrotransposons (Tos10, Tos17, and Tos19) are activated under tissue culture conditions. The most active one, Tos17, was studied in detail. The copy number of Tos17 increased with prolonged culture period. In all of the plants regenerated from tissue cultures, including transgenic plants, 5 to 30 transposed Tos17 copies were detected. The transcript of Tos17 was only detected under tissue culture conditions, indicating that the transposition of Tos17 is mainly regulated at the transcriptional level. To examine the target-site specificity of Tos17 transposition, sequences flanking transposed Tos17 copies were analyzed. At least four out of eight target sites examined are coding regions. Other target sites may also be in genes because two out of four were transcribed. The regenerated plants with Tos17-insertions in the phytochrome A gene and the S-receptor kinase-related gene were identified. These results indicate that activation of Tos17 is an important cause of tissue culture-induced mutations. Tissue culture-induced activation of Tos17 may be a useful tool for insertional mutagenesis and functional analysis of genes.
Resumo:
Many well-known specialists have contributed to this book which presents for the first time an in-depth look at the viruses, their satellites and the retrotransposons infecting (or occuring in) one plant family: the Poaceae (Gramineae). After molecular and biological descriptions of the viruses to species level, virus diseases are presented by crop: barley, maize, rice, rye, sorghum, sugarcane, triticales, wheats, forage, ornamental and lawn. A detailed index of the viruses and taxonomic lists will help readers in the search for information.