994 resultados para Resonance region


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The screening correction to the coherent pair-production cross section on the oxygen molecule has been calculated using self-consistent relativistic wave functions for the one-center and two-center Coulomb potentials. It is shown that the modification of the wave function due to molecular binding and the interference between contributions from the two atoms have both sizeable effects on the screening correction. The so-obtained coherent pair-production cross section which makes up the largest part of the total atomic cross section was used to evaluate the total nuclear absorption cross section from photon attenuation measurements on liquid oxygen. The result agrees with cross sections for other nuclei if A-scaling is assumed. The molecular effect on the pair cross section amounts to 15 % of the nuclear cross section in the {\delta-resonance} region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present predictions for the spin structure functions of the proton in the framework of a unitary isobar model for one-pion photo- and electroproduction. Our results are compared with recent experimental data from SLAC. The first moments of the calculated structure functions fullfil the Gerasimov-Drell-Hearn and Burkhardt-Cottingham sum rules within an error of typically 5-10%.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We analyse the global structure of the phase space of the planar planetary 2/1 mean-motion resonance in cases where the outer planet is more massive than its inner companion. Inside the resonant domain, we show the existence of two families of periodic orbits, one associated to the librational motion of resonant angle (sigma-family) and the other related to the circulatory motion of the difference in longitudes of pericentre (Delta pi-family). The well-known apsidal corotation resonances (ACR) appear as intersections between both families. A complex web of secondary resonances is also detected for low eccentricities, whose strengths and positions are dependent on the individual masses and spatial scale of the system. The construction of dynamical maps for various values of the total angular momentum shows the evolution of the families of stable motion with the eccentricities, identifying possible configurations suitable for exoplanetary systems. For low-moderate eccentricities, several different stable modes exist outside the ACR. For larger eccentricities, however, all stable solutions are associated to oscillations around the stationary solutions. Finally, we present a possible link between these stable families and the process of resonance capture, identifying the most probable routes from the secular region to the resonant domain, and discussing how the final resonant configuration may be affected by the extension of the chaotic layer around the resonance region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The general expression for the Mössbauer lineshape in the presence of radio frequency perturbation derived earlier has been further extended. This involves the calculation of the off-diagonal matrix elements of the correlation function. The results show that there are additional transition lines owing to the nuclear magnetic resonance induced transition in the resonance region. These lines do not show any broadening or splitting. As an example the effect of the rf field on 57Fe nuclei is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spin dependent cross sections, σT1/2 and σT3/2 , and asymmetries, A and A for 3He have been measured at the Jefferson Lab's Hall A facility. The inclusive scattering process 3He(e,e)X was performed for initial beam energies ranging from 0.86 to 5.1 GeV, at a scattering angle of 15.5°. Data includes measurements from the quasielastic peak, resonance region, and the deep inelastic regime. An approximation for the extended Gerasimov-Drell-Hearn integral is presented at a 4-momentum transfer Q2 of 0.2-1.0 GeV2.

Also presented are results on the performance of the polarized 3He target. Polarization of 3He was achieved by the process of spin-exchange collisions with optically pumped rubidium vapor. The 3He polarization was monitored using the NMR technique of adiabatic fast passage (AFP). The average target polarization was approximately 35% and was determined to have a systematic uncertainty of roughly ±4% relative.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reactions pi(-)p -> eta n and gamma p -> eta p are investigated within a dynamical coupled-channels model of meson production reactions in the nucleon resonance region The meson-baryon channels included are pi N, pi Delta, sigma N, and rho N The direct eta-photoproduction process is studied within a formalism based on a chiral constituent quark model approach, complemented with a one-gluon-exchange mechanism, to take into account the breakdown of the SU(6)circle times O(3) symmetry In the models search, the following known nucleon resonances are embodied S-11(1535), S-11(1650), P-11(1440), P-11(1710), P-13(1720), D-13(1520), D-13(1700), D-15(1675), and F-15(1680). Data for the pi(-)p -> eta n reaction from threshold up to a total center-of-mass energy of W approximate to 2 GeV are satisfactorily reproduced For the photoproduction channel: two additional higher mass known resonances, P-13(1900) and F-15(2000), are also considered However, reproducing the data for gamma p -> eta p requires, within our approach, two new nucleon resonances, for which we extract, mass and width

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The chaotic profile of dust grain dynamics associated with dust-acoustic oscillations in a dusty plasma is considered. The collective behaviour of the dust plasma component is described via a multi-fluid model, comprising Boltzmann distributed electrons and ions, as well as an equation of continuity possessing a source term for the dust grains, the dust momentum and Poisson's equations. A Van der Pol–Mathieu-type nonlinear ordinary differential equation for the dust grain density dynamics is derived. The dynamical system is cast into an autonomous form by employing an averaging method. Critical stability boundaries for a particular trivial solution of the governing equation with varying parameters are specified. The equation is analysed to determine the resonance region, and finally numerically solved by using a fourth-order Runge–Kutta method. The presence of chaotic limit cycles is pointed out.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Effect of bound nucleon internal structure change on nuclear structure functions is investigated based on local quark-hadron duality. The bound nucleon structure functions calculated for charged-lepton and (anti)neutrino scattering are all enhanced in symmetric nuclear matter at large Bjorken-x (x greater than or similar to 0.85) relative to those in a free nucleon. This implies that a part of the enhancement observed in the nuclear structure function F-2 (in the resonance region) at large Bjorken-x (the EMC effect) is due to the effect of the bound nucleon internal structure change. However, the x dependence for the charged-lepton and (anti)neutrino scattering is different. The former (latter) is enhanced (quenched) in the region 0.8 less than or similar to x less than or similar to 0.9 (0.7 less than or similar to x less than or similar to 0.85) due to the difference of the contribution from axial vector forrn factor. Because of these differences charge symmetry breaking in parton distributions will be enhanced in nuclei. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The investigation of the behavior of a nonlinear system consists in the analysis of different stages of its motion, where the complexity varies with the proximity of a resonance region. Near this region the stability domain of the system undergoes sudden changes due basically to competition and interaction between periodic and saddle solutions inside the phase portrait, leading to the occurrence of the most different phenomena. Depending of the domain of the chosen control parameter, these events can reveal interesting geometric features of the system so that the phase portrait is not capable to express all them, since the projection of these solutions on the two-dimensional surface can hide some aspects of these events. In this work we will investigate the numerical solutions of a particular pendulum system close to a secondary resonance region, where we vary the control parameter in a restrict domain in order to draw a preliminary identification about what happens with this system. This domain includes the appearance of non-hyperbolic solutions where the basin of attraction in the center of the phase portrait diminishes considerably, almost disappearing, and afterwards its size increases with the direction of motion inverted. This phenomenon delimits a boundary between low and high frequency of the external excitation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nonideal systems are those in which one takes account of the influence of the oscillatory system on the energy supply with a limited power (Kononenko, 1969). In this paper, a particular nonideal system is investigated, consisting of a pendulum whose support point is vibrated along a horizontal guide by a two bar linkage driven by a DC motor, considered to be a limited power supply. Under these conditions, the oscillations of the pendulum are analyzed through the variation of a control parameter. The voltage supply of the motor is considered to be a reliable control parameter. Each simulation starts from zero speed and reaches a steady-state condition when the motor oscillates around a medium speed. Near the fundamental resonance region, the system presents some interesting nonlinear phenomena, including multi-periodic, quasiperiodic, and chaotic motion. The loss of stability of the system occurs through a saddle-node bifurcation, where there is a collision of a stable orbit with an unstable one, which is approximately located close to the value of the pendulum's angular displacement given by alpha (C)= pi /2. The aims of this study are to better understand nonideal systems using numerical simulation, to identify the bifurcations that occur in the system, and to report the existence of a chaotic attractor near the fundamental resonance. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents the complete set of features for solutions of a particular non-ideal mechanical system near the fundamental and near to a secondary resonance region. The system comprises a pendulum with a horizontally moving suspension point. Its motion is the result of a non-ideal rotating power source (limited power supply), acting oil the Suspension point through a crank mechanism. Main emphasis is given to the loss of stability, which occurs by a sequence of events, including intermittence and crisis, when the system reaches a chaotic attractor. The system also undergoes a boundary-crisis, which presents a different aspect in the bifurcation diagram due to the non-ideal supposition. (c) 2004 Published by Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent experimental data on first-forbidden charge-exchange resonances are discussed in the framework of a schematic model. We also evaluate the screening of the weak coupling constants induced by both the giant resonances and the Δ-isobar. It is shown that the last effect does not depend on the multipolarity of the one-particle moment. Due to the same reason, the fraction of the reaction strength pushed up into the Δ-resonance region is always the same regardless of the quantum numbers carried by the excitation. Simple expressions are derived for the dependence of the excitation energies of the first-forbidden giant resonances on the mass number and isospin of the target. The model reproduces consistently both the Gamow-Teller and the first-forbidden resonances. © 1983.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work a particular system is investigated consisting of a pendalum whose point of support is vibrated along a horizontal guide by a two bar linkage driven from a DC motor, considered as a limited power source. This system is nonideal since the oscillatory motion of the pendulum influences the speed of the motor and vice-versa, reflecting in a more complicated dynamical process. This work comprises the investigation of the phenomena that appear when the frequency of the pendulum draws near a secondary resonance region, due to the existing nonlinear interactions in the system. Also in this domain due to the power limitation of the motor, the frequency of the pendulum can be captured at resonance modifying completely the final response of the system. This behavior is known as Sommerfield effect and it will be studied here for a nonlinear system.