986 resultados para Residual Soil
Resumo:
Crack is a significant influential factor in soil slope that could leads to rainfall-induced slope instability. Existence of cracks at soil surface will decrease the shear strength and increase the hydraulic conductivity of soil slope. Although previous research has shown the effect of surface-cracks in soil stability, the influence of deep-cracks on soil stability is still unknown. The limited availability of deep crack data due to the difficulty of effective investigate methods could be one of the obstacles. Current technology in electrical resistivity can be used to detect deep-cracks in soil. This paper discusses deep cracks in unsaturated residual soil slopes in Indonesia using electrical resistivity method. The field investigation such as bore hole and SPT tests was carried out at multiple locations in the area where the electrical resistivity testing have been conducted. Subsequently, the results from bore-hole and SPT test were used to verify the results of the electrical resistivity test. This study demonstrates the benefits and limitations of the electrical resistivity in detecting deep-cracks in a residual soil slopes.
Resumo:
This project sought to investigate parameters of residual soil materials located in South East Queensland (SEQ), as determined from a large number of historical site investigation records. This was undertaken to quantify material parameter variability and to assess the validity of using commonly adopted correlations to estimate "typical" soil parameters for this region. A dataset of in situ and laboratory derived residual soil parameters was constructed and analysed to identify potential correlations that related either to the entire area considered, or to specific residual soils that were derived from a common parent material. The variability of SEQ soil parameters were generally found to be greater than the results of equivalent studies that analysed transported soil dominant datasets. Noteworthy differences in material properties also became evident when residual soils weathered from different parent materials were considered independently. Large variation between the correlations developed for specific soil types was found, which highligted both heterogeneity of the studied materials and the incompatibility of generic correlations to residual soils present in SEQ. Region and parent material specific correlations that estimate shear strength from in situ penetration tests have been proposed for the various residual soil types considered.
Resumo:
The early warning based on real-time prediction of rain-induced instability of natural residual slopes helps to minimise human casualties due to such slope failures. Slope instability prediction is complicated, as it is influenced by many factors, including soil properties, soil behaviour, slope geometry, and the location and size of deep cracks in the slope. These deep cracks can facilitate rainwater infiltration into the deep soil layers and reduce the unsaturated shear strength of residual soil. Subsequently, it can form a slip surface, triggering a landslide even in partially saturated soil slopes. Although past research has shown the effects of surface-cracks on soil stability, research examining the influence of deep-cracks on soil stability is very limited. This study aimed to develop methodologies for predicting the real-time rain-induced instability of natural residual soil slopes with deep cracks. The results can be used to warn against potential rain-induced slope failures. The literature review conducted on rain induced slope instability of unsaturated residual soil associated with soil crack, reveals that only limited studies have been done in the following areas related to this topic: - Methods for detecting deep cracks in residual soil slopes. - Practical application of unsaturated soil theory in slope stability analysis. - Mechanistic methods for real-time prediction of rain induced residual soil slope instability in critical slopes with deep cracks. Two natural residual soil slopes at Jombok Village, Ngantang City, Indonesia, which are located near a residential area, were investigated to obtain the parameters required for the stability analysis of the slope. A survey first identified all related field geometrical information including slope, roads, rivers, buildings, and boundaries of the slope. Second, the electrical resistivity tomography (ERT) method was used on the slope to identify the location and geometrical characteristics of deep cracks. The two ERT array models employed in this research are: Dipole-dipole and Azimuthal. Next, bore-hole tests were conducted at different locations in the slope to identify soil layers and to collect undisturbed soil samples for laboratory measurement of the soil parameters required for the stability analysis. At the same bore hole locations, Standard Penetration Test (SPT) was undertaken. Undisturbed soil samples taken from the bore-holes were tested in a laboratory to determine the variation of the following soil properties with the depth: - Classification and physical properties such as grain size distribution, atterberg limits, water content, dry density and specific gravity. - Saturated and unsaturated shear strength properties using direct shear apparatus. - Soil water characteristic curves (SWCC) using filter paper method. - Saturated hydraulic conductivity. The following three methods were used to detect and simulate the location and orientation of cracks in the investigated slope: (1) The electrical resistivity distribution of sub-soil obtained from ERT. (2) The profile of classification and physical properties of the soil, based on laboratory testing of soil samples collected from bore-holes and visual observations of the cracks on the slope surface. (3) The results of stress distribution obtained from 2D dynamic analysis of the slope using QUAKE/W software, together with the laboratory measured soil parameters and earthquake records of the area. It was assumed that the deep crack in the slope under investigation was generated by earthquakes. A good agreement was obtained when comparing the location and the orientation of the cracks detected by Method-1 and Method-2. However, the simulated cracks in Method-3 were not in good agreement with the output of Method-1 and Method-2. This may have been due to the material properties used and the assumptions made, for the analysis. From Method-1 and Method-2, it can be concluded that the ERT method can be used to detect the location and orientation of a crack in a soil slope, when the ERT is conducted in very dry or very wet soil conditions. In this study, the cracks detected by the ERT were used for stability analysis of the slope. The stability of the slope was determined using the factor of safety (FOS) of a critical slip surface obtained by SLOPE/W using the limit equilibrium method. Pore-water pressure values for the stability analysis were obtained by coupling the transient seepage analysis of the slope using finite element based software, called SEEP/W. A parametric study conducted on the stability of an investigated slope revealed that the existence of deep cracks and their location in the soil slope are critical for its stability. The following two steps are proposed to predict the rain-induced instability of a residual soil slope with cracks. (a) Step-1: The transient stability analysis of the slope is conducted from the date of the investigation (initial conditions are based on the investigation) to the preferred date (current date), using measured rainfall data. Then, the stability analyses are continued for the next 12 months using the predicted annual rainfall that will be based on the previous five years rainfall data for the area. (b) Step-2: The stability of the slope is calculated in real-time using real-time measured rainfall. In this calculation, rainfall is predicted for the next hour or 24 hours and the stability of the slope is calculated one hour or 24 hours in advance using real time rainfall data. If Step-1 analysis shows critical stability for the forthcoming year, it is recommended that Step-2 be used for more accurate warning against the future failure of the slope. In this research, the results of the application of the Step-1 on an investigated slope (Slope-1) showed that its stability was not approaching a critical value for year 2012 (until 31st December 2012) and therefore, the application of Step-2 was not necessary for the year 2012. A case study (Slope-2) was used to verify the applicability of the complete proposed predictive method. A landslide event at Slope-2 occurred on 31st October 2010. The transient seepage and stability analyses of the slope using data obtained from field tests such as Bore-hole, SPT, ERT and Laboratory tests, were conducted on 12th June 2010 following the Step-1 and found that the slope in critical condition on that current date. It was then showing that the application of the Step-2 could have predicted this failure by giving sufficient warning time.
Resumo:
It is well understood that that there is variation inherent in all testing techniques, and that all soil and rock materials also contain some degree of natural variability. Less consideration is normally given to variation associated with natural material heterogeneity within a site, or the relative condition of the material at the time of testing. This paper assesses the impact of spatial and temporal variability upon repeated insitu testing of a residual soil and rock profile present within a single residential site over a full calendar year, and thus range of seasonal conditions. From this repeated testing, the magnitude of spatial and temporal variation due to seasonal conditions has demonstrated that, depending on the selected location and moisture content of the subsurface at the time of testing, up to a 35% variation within the test results can be expected. The results have also demonstrated that the completed insitu test technique has a similarly large measurement and inherent variability error and, for the investigated site, up to a 60% variation in normalised results was observed. From these results, it is recommended that the frequency and timing of insitu tests should be considered when deriving geotechnical design parameters from a limited data set.
Resumo:
Residually derived red soils occur in Bangalore District of Karnataka State, India. The porous and unsaturated nature of the red soils makes them susceptible to collapse on wetting under load. The present study analyses the collapse behaviour of an unsaturated bonded (undisturbed) red soil from Bangalore referenced to tests on samples in an unbonded (remoulded) state. A filter paper method was used to determine the matric suction of the bonded and unbonded specimens, and mercury intrusion porosimetry (MIP) was used to determine their soil structure. Analysis of the experimental results shows that bonding plays an important role in the collapse behaviour of the unsaturated residual soil. The results of the study also provide insight into the volume change behaviour of unsaturated bonded soils on wetting within and beyond the yield locus.
Resumo:
Devido às mudanças climáticas do planeta, principalmente ao aquecimento global, as formas de utilização dos solos na agricultura têm atraído grande atenção de pesquisadores. Mudanças de manejo podem influenciar a respiração do solo e, por conseguinte, alterar drasticamente o sequestro de C. Os objetivos deste trabalho foram avaliar, em semeadura direta, a influência da calagem nas emissões de CO2 do solo e correlacioná-las aos atributos químicos deste após dois anos da calagem. Utilizou-se o delineamento em blocos casualizados, com seis repetições. Os tratamentos constituíram de quatro doses de calcário e uma testemunha. Decorridos dois anos da calagem, avaliou-se a emissão residual de CO2 do solo, coletaram-se amostras nas camadas de 0-5, 5-10, 10-20 e 20-30 cm de profundidade e determinaram-se os teores de P, Ca2+ e Mg2+ e valores de pH e de saturação por bases. A emissão residual de CO2 do solo, quando a dose recomendada foi aplicada, foi 24,1 % superior, quando comparada à do solo sem aplicação de calcário, e 47,4 % maior, quando se aplicou o dobro da dose recomendada. A calagem melhorou as condições químicas do solo, e a emissão de CO2 aumentou linearmente com o aumento das doses. A emissão de CO2 do solo apresentou correlações positivas com os teores de P, Ca2+ e Mg2+ e com os valores de pH e de saturação por bases e negativas com os teores de H + Al e Al3+. Maiores coeficientes de correlação entre as taxas de emissão de CO2 do solo e os atributos químicos deste ocorreram na camada de 10-20 cm.
Resumo:
The modified Cam - Clay model was used to model experimental results of a saturated residual sandy soil from Sao Carlos - SP. Triaxial compression tests were performed using Bishop - Wesley cell with internal transducers to measure axial and radial strains. It was observed that the model fairly fitted experimental results, specially the principal stress difference at critical state. In general it was observed a good qualitative agreement between experimental and predicted strain values, considering compression or expansion of the samples. However, in all the stress path used, but 100 degrees and 140 degrees, the model yielded strains larger than that measured in the tests.
Resumo:
The effects of climate change and the growing demand for water for domestic, industrial, agricultural and recreational activities have been led the use of treated wastewater (reclaimed water) for such applications. The artificial recharge of aquifers with treated wastewater can be an alternative way for restoring underground water volumes that can be used for satisfying some activities, particularly in water shortage areas or where their quality is not suitable for use. After a two-year monitoring period in the Vila Fernando WWTP (Guarda, Portugal), the characteristics of the treated effluent suggest that it could be used for infiltration for aquifer recharge. A multi-criteria analysis based on GIS was developed for site location of infiltration sites. The procedure has involved the combination of six thematic maps and environmental, technical and economic criteria, over an area of 6687.1 ha. About 6.4 ha were selected for suitable sites for infiltration and one of these sites (Quinta de Gonçalo Martins, Guarda) was selected for collecting soil samples. The characterization of the soil indicates that is favorable to the infiltration of treated wastewater for artificial recharge of aquifers.
Resumo:
In -situ soils in gee-material spectrum might arise due to sedimentation or could be non-sedimentary residual formations. The inherent nature and diversity of geological processes involved in the soil formation stage itself are responsible for a wide variability in the in-situ state of the soil. In this paper the possibility of analyses to arrive at engineering parameters of residual soils with varied degrees of residual or acquired cementation by the use of physical and in-situ parameters normally determined in routine investigations, are examined. An Intrinsic State Line,(ISL), with reference to an intrinsic state parameter (e/e(L)) and its variation with effective stress for reconstituted clays has been developed for residual tropical soils of non-sedimentary origin. In relation to the Intrinsic State Line (ISL), the undisturbed state, e, the potential parameter, e(L), along with the overburden pressure data has been analyzed to identify the dominance of cementation or stress history or both in controlling the compressibility and strength behaviour of natural residual soil. The location of yield stress point in relation to the ISL, pre-, and post- yield stress, compression indices along the e- log sigma(v) path provide a simple means to the analysis of the compressibility characteristics of cemented soils for analysis.
Resumo:
A estabilidade de taludes naturais é um tema de grande interesse ao engenheiro geotécnico, face às significativas perdas econômicas, e até mesmo humanas, resultantes da ruptura de taludes. Estima-se que a deflagração de escorregamentos já provocou milhares de mortes, e dezenas de bilhões de dólares em prejuízos anuais em todo o mundo. Os fenômenos de instabilização de encostas são condicionados por muitos fatores, como o clima, a litologia e as estruturas das rochas, a morfologia, a ação antrópica e outros. A análise dos condicionantes geológicos e geotécnicos de escorregamentos proporciona a apreciação de cada um dos fatores envolvidos nos processos de instabilização de encostas, permitindo a obtenção de resultados de interesse, no que diz respeito ao modo de atuação destes fatores. O presente trabalho tem como objetivo a utilização da Lógica Nebulosa (Fuzzy) para criação de um Modelo que, de forma qualitativa, forneça uma previsão do risco de escorregamento de taludes em solos residuais. Para o cumprimento deste objetivo, foram estudados os fatores envolvidos nos processos de instabilização de encostas, e a forma como estes fatores se interrelacionam. Como experiência do especialista para a elaboração do modelo, foi analisado um extenso banco de dados de escorregamentos na cidade do Rio de Janeiro, disponibilizado pela Fundação Geo-Rio. Apresenta-se, neste trabalho, um caso histórico bem documentado para a validação do Modelo Fuzzy e análises paramétricas, realizadas com o objetivo verificar a coerência do modelo e a influência de cada um dos fatores adotados na previsão do risco de escorregamento. Dentre as principais conclusões, destaca-se a potencialidade da lógica nebulosa na previsão de risco de escorregamentos de taludes em solo residual, aparecendo como uma ferramenta capaz de auxiliar na detecção de áreas de risco.
Resumo:
Estudos de fundações de obras de arte, como barragens de concreto-gravidade e barragens de terra, devem contemplar todos os esforços atuantes no maciço de fundação, principalmente as tensões e as deformações esperadas durante todo o processo construtivo e no período pós-construtivo. Quando essas estruturas são apoiadas sobre rochas de boa sanidade, a escolha do barramento geralmente favorece a implantação de barragens de concreto. Entretanto, quando os maciços de fundação são formados por solos, a opção técnica geralmente mais bem aceita é quanto à utilização de barragens de terra. Em ambos os casos, as análises de estabilidade e de deformação são desenvolvidas por métodos analíticos bem consolidados na prática. Nas condições mais adversas de fundação, seja em rochas ou em solos com marcante anisotropia e estruturas reliquiares herdadas da rocha-mãe, a utilização de modelos constitutivos anisotrópicos em análises por elementos finitos propicia simulações mais realistas dessas feições estruturais, contribuindo para o seu melhor conhecimento. O presente trabalho teve por objetivo demonstrar a utilização de um modelo constitutivo anisotrópico no estudo da fundação da Barragem San Juan, localizada na República Dominicana, que foi concebida como uma estrutura tipo concreto-gravidade apoiada sobre solos residuais jovens altamente anisotrópicos. Nessa obra, apesar de sua pequena altura, a presença marcante de descontinuidades ensejou um estudo mais detalhado do comportamento tensão-deformação da fundação, levando em conta o levantamento detalhado da atitude das descontinuidades presentes no maciço e os resultados de ensaios de resistência em planos paralelos e normais às descontinuidades. Para a estimativa de deformações, os respectivos módulos de Young (Es) foram estimados com base em correlações com a resistência à penetração SPT desenvolvidas nesta dissertação, a partir de um estudo estatístico baseado em várias publicações disponíveis na literatura. As análises numéricas por elementos finitos foram desenvolvidas através do programa Plaxis 2D, utilizando-se como modelo constitutivo aquele denominado The Jointed Rock Model, que é particularmente recomendado para análises de estabilidade e deformação de materiais anisotrópicos. Os resultados das análises numéricas foram comparados com as análises de equilíbrio limite elaboradas para o projeto executivo da referida barragem, pelo programa Slope, utilizando o método rigoroso de Morgenstern e Price, que se mostrou conservador. Os resultados das análises numéricas mostraram sua inequívoca versatilidade para a escolha de opções de reforço da fundação, através de dentes que objetivavam o aumento das condições de estabilidade da barragem.
Resumo:
O presente trabalho tem como objetivo estudar o comportamento de um solo residual melhorado através do uso de técnicas mecânicas de compactação e da adição de cimento. Complementarmente foram realizadas análises numéricas destes materiais tratados quando utilizados como base de fundações superficiais. O programa experimental incluiu a retirada de amostras intactas e de material amolgado para a execução de ensaios triaxiais saturados drenados com medida interna de deformações, a fim de estudar o comportamento do solo natural e do solo tratado, quer por compactação, quer por adição de cimento e compactação. Além disto, tais ensaios são determinantes na obtenção de parâmetros constitutivos para a realização de simulações numéricas. O Método dos Elementos Finitos foi utilizado para simular o comportamento carga versus recalque de placas assentes sobre o solo natural e sobre camadas de solo melhorado. O modelo Hiperbólico foi empregado na análise numérica para modelar o comportamento tensãodeformação dos materiais. Os resultados das simulações dos ensaios de placa sobre camadas de solo melhorado demonstraram que houve um aumento significativo da capacidade de suporte, além de uma redução considerável dos recalques, quando comparados ao comportamento do solo natural.
Resumo:
Pós-graduação em Engenharia Civil e Ambiental - FEB
Resumo:
Global cereal production will need to increase by 50% to 70% to feed a world population of about 9 billion by 2050. This intensification is forecast to occur mostly in subtropical regions, where warm and humid conditions can promote high N2O losses from cropped soils. To secure high crop production without exacerbating N2O emissions, new nitrogen (N) fertiliser management strategies are necessary. This one-year study evaluated the efficacy of a nitrification inhibitor (3,4-dimethylpyrazole phosphate—DMPP) and different N fertiliser rates to reduce N2O emissions in a wheat–maize rotation in subtropical Australia. Annual N2O emissions were monitored using a fully automated greenhouse gas measuring system. Four treatments were fertilized with different rates of urea, including a control (40 kg-N ha−1 year−1), a conventional N fertiliser rate adjusted on estimated residual soil N (120 kg-N ha−1 year−1), a conventional N fertiliser rate (240 kg-N ha−1 year−1) and a conventional N fertiliser rate (240 kg-N ha−1 year−1) with nitrification inhibitor (DMPP) applied at top dressing. The maize season was by far the main contributor to annual N2O emissions due to the high soil moisture and temperature conditions, as well as the elevated N rates applied. Annual N2O emissions in the four treatments amounted to 0.49, 0.84, 2.02 and 0.74 kg N2O–N ha−1 year−1, respectively, and corresponded to emission factors of 0.29%, 0.39%, 0.69% and 0.16% of total N applied. Halving the annual conventional N fertiliser rate in the adjusted N treatment led to N2O emissions comparable to the DMPP treatment but extensively penalised maize yield. The application of DMPP produced a significant reduction in N2O emissions only in the maize season. The use of DMPP with urea at the conventional N rate reduced annual N2O emissions by more than 60% but did not affect crop yields. The results of this study indicate that: (i) future strategies aimed at securing subtropical cereal production without increasing N2O emissions should focus on the fertilisation of the summer crop; (ii) adjusting conventional N fertiliser rates on estimated residual soil N is an effective practice to reduce N2O emissions but can lead to substantial yield losses if the residual soil N is not assessed correctly; (iii) the application of DMPP is a feasible strategy to reduce annual N2O emissions from sub-tropical wheat–maize rotations. However, at the N rates tested in this study DMPP urea did not increase crop yields, making it impossible to recoup extra costs associated with this fertiliser. The findings of this study will support farmers and policy makers to define effective fertilisation strategies to reduce N2O emissions from subtropical cereal cropping systems while maintaining high crop productivity. More research is needed to assess the use of DMPP urea in terms of reducing conventional N fertiliser rates and subsequently enable a decrease of fertilisation costs and a further abatement of fertiliser-induced N2O emissions.
Resumo:
Sorghum grown in India in the post-rainy season (Rabi) relies on residual soil moisture, and the crop is commonly exposed to terminal drought stress. But there is a ready market for its high-quality grain and stover (used as fodder on dairy farms). Steps to improve productivity while maintaining quality offer an attractive opportunity for sorghum farmers to improve their incomes. Genetically improving the efficiency of using stored soil moisture is a prime target to maximise grain/stover production and quality of Rabi sorghum. This project aims to achieve this through the application of DNA sequences known as quantitative trait loci (QTLs). The project scientists will introduce marker-assisted introgression of stay-green QTLs into sorghum lines, enhancing both the quality and the quantity of grain/stover of postrainy sorghum. They will also use modelling to identify the key physiological traits involved in a higher, more stable yield across water-limited environments of India and Australia, and the key stay-green QTLs contributing to these traits. The publicly available QTL isolines lines developed in this project will be the basis of new varieties to be bred in a subsequent phase.