961 resultados para Residential building
Resumo:
Forests are a store of carbon and an eco-system that continually removes carbon dioxide from the atmosphere. If they are sustainably managed, the carbon store can be maintained at a constant level, while the trees removed and converted to timber products can form an additional long term carbon store. The total carbon store in the forest and associated ‘wood chain’ therefore increases over time, given appropriate management. This increasing carbon store can be further enhanced with afforestation. The UK’s forest area has increased continually since the early 1900s, although the rate of increase has declined since its peak in the late 1980s, and it is a similar picture in the rest of Europe. The increased sustainable use of timber in construction is a key market incentive for afforestation, which can make a significant contribution to reducing carbon emissions. The case study presented in this paper demonstrates the carbon benefits of a Cross Laminated Timber (CLT) solution for a multi-storey residential building in comparison with a more conventional reinforced concrete solution. The embodied carbon of the building up to completion of construction is considered, together with the stored carbon during the life of the building and the impact of different end of life scenarios. The results of the study show that the total stored carbon in the CLT structural frame is 1215tCO2 (30tCO2 per housing unit). The choice of treatment at end of life has a significant effect on the whole life embodied carbon of the CLT frame, which ranges from -1017 tCO2e for re-use to +153tCO2e for incinerate without energy recovery. All end of life scenarios considered result in lower total CO2e emissions for the CLT frame building compared with the reinforced concrete frame solution.
Resumo:
The building industry is often berated for its short comings in meeting up with the demand for the provision of new housing. Addressing the need for new housing stock is a challenge that has led to debates among professional bodies, the construction sector, housing industry and government. The introduction of new manufacturing technologies is often offered as a solution, but the challenges of increasing the amount of off-site construction in residential building are well known and well-rehearsed. The modern flying factory (MFF) is a concept that involves the manufacture of specific components or modules in temporary off- or near- site locations using relatively simple and quick to set up and dismantle technologies and processes. The aim is to produce short batches and hence achieve some of the benefits of off-site manufacture on a much smaller scale than in dedicated factory environments. A case study of a modern flying factory being set up to produce pre-assembled utility cupboards for a large residential development in London is presented, involving participant observation and informal interviews with key actors on the design and operationalising of the process. The case reveals that although there are costs, efficiency and health and safety benefits to using MFF approaches, there are also challenges to overcome over the time required to set up and establish the process for relatively short runs, and in evaluating whether the MFF or traditional site based production is most effective for particular aspects of projects.
Resumo:
This paper provides some results on the potential to minimize environmental impacts in residential buildings life cycle, through façade design strategies, analyzing also their impact on costs from a lifecycle perspective. On one hand, it assesses the environmental damage produced by the materials of the building envelope, and on the other, the benefits they offer in terms of habitability and liveability in the use phase. The analysis includes several design parameters used both for rehabilitation of existing facades, as for new facades, trying to cover various determinants and proposing project alternatives. With this study we intended to contribute to address the energy challenges for the coming years, trying also to propose pathways for innovative solutions for the building envelope.
Resumo:
Today, the building sector alone accounts for 40% of the total energy consumption in the European Union (EU). In most EU member states, about 70–90% of the buildings were constructed at least 20 years ago. Due to this, these buildings have a worse energy efficiency behavior than the new ones that comply with current regulations. As a consequence, acting on the existing building stock is needed, developing special methods on assessment and advice in order to reduce the total energy consumption. This article addresses a procedure allowing the classification and characterization of existing buildings facades. It can help researchers to achieve in-depth knowledge of the facades construction and therefore knowing their thermal behavior. Once knowing that, the most appropriate upgrading strategies can be established with the purpose of reducing the energy demand. Furthermore, the classified facade typologies have been verified, complying with current and future Spanish regulations and according to the results obtained, a series of upgrading strategies based on the opaque part and those in the translucent part, have been proposed. As a conclusion, this procedure helps us to select the most appropriate improvement measures for each type of facade in order to comply with current and future Spanish regulations. This proposed method has been tested in a specific neighborhood of Madrid, in a selected period of time, between 1950 and 1980, but it could be applicable to any other city.
Resumo:
La edificación es un sector de enorme influencia en la evolución del consumo de energía y las emisiones de CO2. Teniendo en cuenta que en estos momentos hay 3,5 millones de viviendas vacías y que los próximos años no va a haber un aumento en la demanda de vivienda nueva, la rehabilitación sostenible del parque residencial existente es una tarea prioritaria y sobre la que hay que prestar especial interés. Dado que aún queda mucho donde actuar, es necesario hacer una reflexión sobre cómo se está rehabilitando para poder mejorar en el futuro. Por ello, el objetivo del presente trabajo es analizar algunas estrategias adoptadas hasta ahora en el parque inmobiliario y su aplicación en un caso de estudio, mediante la mejora de la fachada de un edificio de viviendas situado en Madrid.
Resumo:
How can we measure ‘quality of life’? The sustainable refurbishment goes beyond strictly energy aspects. Sustainability indicators are needed to facilitate data collection and to provide information which does not require too time-consuming calculations. Thus, you can offer an idea of the extent and quality of the rehabilitation before starting the project and, also, the obtained results can be evaluated in an agile way after the refurbishment. From a list of social indicators gathered from different methods, sustainability assessment tools and International and European standards, three social indicators are proposed: Users Satisfaction, Participation Agreement and Quality of Life. This paper shows the development of Quality of Life social indicator, the more closely related to the main objectives of Researchand Development Project “Sustainable Refurbishment”: improving energy efficiency and wellbeing of users in existing residential buildings. Finally, this social indicator is applied to a real case study in Málaga (Spain).
Resumo:
The opening of new windows on the façade is proposed as a refurbishment strategy in an existing building in Málaga to facilitate cross ventilation of dwellings. The building is a residential block of 140 public housing units for rent for people with low income in Málaga (Spain), property of the City Council. By modeling with Computational Fluid Dynamics (CFD), eleven configurations of openings are studied in two different areas of the main housing type of the building. The quantity of introduced/extracted air into/from the room and the generated airflow patterns are obtained. The modeling allows comparing the different openings configurations to determine the most appropriate ventilation option for every room.
Resumo:
"HUD-PDR-935."--p. [4] of cover.
Resumo:
Mode of access: Internet.
Resumo:
This thesis focuses on the design of a construction method that utilizes a single adaptable kit-of-parts system. The new system is designed to be flexible while also enhancing construction speeds without severely limiting the building's ability to merge into an urban fabric. This thesis proposes a residential structure to be built from a handful of simple structural units. This is accomplished through the design of a residential building situated in an area of Miami currently under reconstruction.
Resumo:
Building's construction activities, operation and demolition are increasingly recognised as a major source of environmental impact. One strategy for reducing such impacts is most widely known by the term Building Environmental Assessment (BEA). The research is an attempt to develop a new BEA scheme for residential buildings in Brunei which focussing on identifying BEA indicators that best suit for Brunei environment, social and economy. Studies show that Brunei residential sector needs urgent attention to transform its current consumption rate in more sustainable way. Recent launch of Brunei Green Building Council, mandatory energy efficiency guidelines and declaration of ambitious energy intensity reduction target, a new BEA scheme will help contribute sustainability target in residential sector. However the issues of developing a new BEA schemes using existing methods may face constraints in their effectiveness. In this regard, a consensus-forming technique-Delphi method-helps improve greater communication and gain consensus from experts in the construction industry through series of questionnaires. As a result, the final framework is produced comprises of 7 key categories and 37 applicable criteria that achieved high degree of consensus and importance.