895 resultados para Reproductive isolation
Resumo:
Ethological isolation of individuals from three allopatric Grammostola populations of Uruguay, G. iheringi (Keyserling, 1891), G. mollicoma (Auserer, 1875) northern population and G. mollicoma southern population, was tested under laboratory conditions. Grammostola iheringi behaved as a reproductive isolated species, whereas the two populations of G. mollicoma did not show ethological isolation between them. However, ecological isolating reproductive mechanisms could be acting on G. mollicoma populations. Artificial burrows seem to be important for reproductive isolation in these species.
Resumo:
The males of the sandfly Lutzomyia longipalpis occur in two forms, one which bears a single pair of pale spots on tergite 4 and another in which an additional pair of spots characterizes tergite 3. In crosses between laboratory reared stocks of the two forms originating from allopatric and sympatric sites in Brazil nearly all males of one form fail to inseminate females of the other. In addition, insemination failure between some allopatric populaytions of Lu. longipalpis with similar tergal spot patterns is recorded, indicating the existence of additional forms in an apparent species complex. The possibility that Lu. longipalpis sensu latu represents more than a single taxon is discussed and the relevance of these findings to future epidemiological studies on kala-azar is considered.
Mechanisms of reproductive isolation between an ant species of hybrid origin and one of its parents.
Resumo:
The establishment of new species by hybridization is difficult because it requires the development of reproductive isolation (RI) in sympatry to escape the homogenizing effects of gene flow from the parental species. Here we investigated the role of two pre- and two postzygotic mechanisms of RI in a system comprising two interdependent Pogonomyrmex harvester ant lineages (the H1 and H2 lineages) of hybrid origin and one of their parental species (P. rugosus). Similar to most other ants, P. rugosus is characterized by an environmental system of caste determination with female brood developing either into queens or workers depending on nongenetic factors. By contrast, there is a strong genetic component to caste determination in the H1 and H2 lineages because the developmental fate of female brood depends on the genetic origin of the parents, with interlineage eggs developing into workers and intralineage eggs developing into queens. The study of a mixed mating aggregation revealed strong differences in mating flight timing between P. rugosus and the two lineages as a first mechanism of RI. A second important prezygotic mechanism was assortative mating. Laboratory experiments also provided support for one of the two investigated mechanisms of postzygotic isolation. The majority of offspring produced from the few matings between P. rugosus and the lineages aborted at the egg stage. This hybrid inviability was under maternal influence, with hybrids produced by P. rugosus queens being always inviable whereas a small proportion of H2 lineage queens produced large numbers of adult hybrid offspring. Finally, we found no evidence that genetic caste determination acted as a second postzygotic mechanism reducing gene flow between P. rugosus and the H lineages. The few viable P. rugosus-H hybrids were not preferentially shunted into functionally sterile workers but developed into both workers and queens. Overall, these results reveal that the nearly complete (99.5%) RI between P. rugosus and the two hybrid lineages stems from the combination of two typical prezygotic mechanisms (mating time divergence and assortative mating) and one postzygotic mechanism (hybrid inviability).
Resumo:
Lutzomyia longipalpis s.l., the main vector of Leishmania chagasi in Latin America, is a species complex although the exact number of siblings is yet unknown. In Brazil, the siblings differ in male copulatory courtship songs and pheromones that most certainly act as pre-zygotic reproductive barriers. Here we analysed the reproductive isolation between three allopatric and two sympatric populations of Lu. longipalpis s.l. from Brazil. The results indicate a strong copulatory and pre-mating isolation between the three allopatric populations. In addition, the results also indicate a stronger pre-mating isolation between the two sympatric siblings than between the three allopatric ones, suggesting a role for reinforcement in the speciation of the Lu. longipalpis s.l. complex.
Resumo:
BACKGROUND: Individuals commonly prefer certain trait values over others when choosing their mates. If such preferences diverge between populations, they can generate behavioral reproductive isolation and thereby contribute to speciation. Reproductive isolation in insects often involves chemical communication, and cuticular hydrocarbons, in particular, serve as mate recognition signals in many species. We combined data on female cuticular hydrocarbons, interspecific mating propensity, and phylogenetics to evaluate the role of cuticular hydrocarbons in diversification of Timema walking-sticks. RESULTS: Hydrocarbon profiles differed substantially among the nine analyzed species, as well as between partially reproductively-isolated T. cristinae populations adapted to different host plants. In no-choice trials, mating was more likely between species with similar than divergent hydrocarbon profiles, even after correcting for genetic divergences. The macroevolution of hydrocarbon profiles, along a Timema species phylogeny, fits best with a punctuated model of phenotypic change concentrated around speciation events, consistent with change driven by selection during the evolution of reproductive isolation. CONCLUSION: Altogether, our data indicate that cuticular hydrocarbon profiles vary among Timema species and populations, and that most evolutionary change in hydrocarbon profiles occurs in association with speciation events. Similarities in hydrocarbon profiles between species are correlated with interspecific mating propensities, suggesting a role for cuticular hydrocarbon profiles in mate choice and speciation in the genus Timema.
Resumo:
The reproductive isolation between two closely related species, Anastrepha bistrigata and A. striata, was studied in the laboratory. Interespecific copulation attempts were observed, but examination of the spermathecae showed that sperm transference did not occur, even after a prolonged period of contact between the mating pairs. These results indicate prezygotic isolation. The analysis of the hourly distribution of mating activities under laboratory conditions, here described for the first time for A. bistrigata, clearly showed differences for the two species, the activities being concentrated in the afternoon period for A. striata and in the morning for A. bistrigata
Resumo:
Drosophila serido is considered to be a superspecies consisting of two species: D. serido, from Brazil and D. koepferae from Argentina and Bolivia. However this probably does not express the entire evolutionary complexity of its populations. Isofemale lines A95F3 (from Brazil) and B20D2 (from Argentina), at present representing, respectively, the first and second species, were analyzed for fertility and fecundity in pair-mating intracrosses and intercrosses, as well as for development time, banding patterns and asynapsis of polytene chromosomes in the isofemale lines and their hybrids.Although variations in experimental conditions resulted in some variability in the results, in general A95F3 fertility and fecundity were lower than in B20D2. Intercrosses of A95F3 females and B20D2 males showed lower fertility and fecundity than the reciprocal crosses, following more closely characteristics of the mother strains. This is in contrast to the results obtained by Fontdevilla et al. (An. Entomol. Soc. Amer. 81: 380-385, 1988) and may be due to the different geographic origin of D. serido strains they used in crosses to B20D2. This difference and others cited in the literature relative to aedeagus morphology, karyotype characteristics, inversion polymorphisms and reproductive isolation strongly indicate that A95F3 and D. serido from the State of Bahia, Brazil are not a single evolutionary entity, reinforcing the idea of greater complexity of the superspecies D. serido than is known today.The reproductive isolation mechanisms found operating between A95F3 and B20D2 were prezygotic and postzygotic, the latter included mortality at the larvae stage in both directions of crosses and sterility of male hybrids in intercrosses involving B20D2 females and A95F3 males. The two isofemale lines differed in egg-adult development time, which was also differently affected by culture medium composition.A95F3 and B20D2 also showed differences in the banding patterns of proximal regions of polytene chromosomes 2, 3 and X, a fixed inversion in chromosome 3 (here named 3t), apparently not described previously, and a high degree of asynapsis in hybrids.These observations, especially those related to reproductive isolation and chromosomal differentiation (including the karyotype, previously described, and the differentiation of banding patterns, described in this paper), as well as the extensive asynapsis observed in hybrids reinforces the distinct species status of A95F3 and B20D2 isofemale lines.
Resumo:
Phylogeographic studies provide an important framework for investigating the mechanisms operating during the earliest stages of speciation, as reproductive barriers can be examined among divergent lineages in a geographic context. We investigated the evolution of early stages of intrinsic postmating isolation among different populations and lineages of Epidendrum denticulatum, a Neotropical orchid distributed across different biomes in South America. We estimated genetic diversity and structure for both nuclear and plastid markers, using a haplotype network, differentiation tests, Bayesian assignment analysis, and divergence time estimates of the main lineages. Reproductive barriers among divergent lineages were examined by analyzing seed viability following reciprocal crossing experiments. Strong plastid phylogeographic structure was found, indicating that E. denticulatum was restricted to multiple refuges during South American forest expansion events. In contrast, significant phylogeographic structure was not found for nuclear markers, suggesting higher gene flow by pollen than by seeds. Large asymmetries in seed set were observed among different plastid genetic groups, suggesting the presence of polymorphic genic incompatibilities associated with cytonuclear interactions. Our results confirm the importance of phylogeographic studies associated with reproductive isolation experiments and suggest an important role for outbreeding depression during the early stages of lineage diversification. © 2013 The Society for the Study of Evolution.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The species-specificity of pairing has been studied in three sympatric Neotropical termites: Cornitermes bequaerti, Cornitermes cumulans and Cornitermes silvestrii (Termitidae, Syntermitinae). Bioassays showed that sex attraction was highly species-specific between C. bequaerti and C cumulans but not between C. cumulans and C. silvestrii. The sex-pairing pheromone of the three species is secreted by the tergal glands of female alates. It consists of a common compound (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol. In C. bequaerti, this polyunsaturated alcohol is the only compound of the sex-pairing pheromone, whereas it is associated with the oxygenated sesquiterpene (E)-nerolidol in C. cumulans, and with (E)-nerolidol and (Z)-dodec-3-en-1-ol in C silvestrii. (3Z,6Z,8E)-Dodeca-3,6,8-trien-1-ol is responsible for sexual attraction, whereas (E)-nerolidol, which is inactive in eliciting attraction of male alates, is responsible for the species-specificity of the attraction. This is the first time that a multicomponent sex-pairing pheromone has been identified in termites. The role of (Z)-dodec-3-en-1-ol present on the surface of the tergal glands of the female alates of C. silvestrii could not be definitively determined, but it is suggested that this compound could be involved in the species-specificity of sex attraction with other sympatric species of Cornitermes. Our study shows that the reproductive isolation in termites is due to a succession of factors, as the chronology of dispersal flights, the species-specificity of sex-pairing pheromones and the species-specific recognition. (C) 2011 Elsevier Ltd. All rights reserved.