998 resultados para Renal Brush-border


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Renal reabsorption of inorganic phosphate (P(i)) is mainly mediated by the Na(+)-dependent P(i)-cotransporter NaPi-IIa that is expressed in the brush-border membrane (BBM) of renal proximal tubules. Regulation and apical expression of NaPi-IIa are known to depend on a network of interacting proteins. Most of the interacting partners identified so far associate with the COOH-terminal PDZ-binding motif (TRL) of NaPi-IIa. In this study GABA(A) receptor-associated protein (GABARAP) was identified as a novel interacting partner of NaPi-IIa applying a membrane yeast-two-hybrid system (MYTH 2.0) to screen a mouse kidney library with the TRL-truncated cotransporter as bait. GABARAP mRNA and protein are present in renal tubules, and the interaction of NaPi-IIa and GABARAP was confirmed by using glutathione S-transferase pulldowns from BBM and coimmunoprecipitations from transfected HEK293 cells. Amino acids 36-68 of GABARAP were identified as the determinant for the described interaction. The in vivo effects of this interaction were studied in a murine model. GABARAP(-/-) mice have reduced urinary excretion of P(i), higher Na(+)-dependent (32)P(i) uptake in BBM vesicles, and increased expression of NaPi-IIa in renal BBM compared with GABARAP(+/+) mice. The expression of Na(+)/H(+) exchanger regulatory factor (NHERF)1, an important scaffold for the apical expression of NaPi-IIa, is also increased in GABARAP(-/-) mice. The absence of GABARAP does not interfere with the regulation of the cotransporter by either parathyroid hormone or acute changes of dietary P(i) content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous findings in rats and in human vegetarians suggest that the plasma carnitine concentration and/or carnitine ingestion may influence the renal reabsorption of carnitine. We tested this hypothesis in rats with secondary carnitine deficiency following treatment with N-trimethyl-hydrazine-3-propionate (THP) for 2 weeks and rats treated with excess L-carnitine for 2 weeks. Compared to untreated control rats, treatment with THP was associated with an approximately 70% decrease in plasma carnitine and with a 74% decrease in the skeletal muscle carnitine content. In contrast, treatment with L-carnitine increased plasma carnitine levels by 80% and the skeletal muscle carnitine content by 50%. Treatment with L-carnitine affected neither the activity of carnitine transport into isolated renal brush border membrane vesicles, nor renal mRNA expression of the carnitine transporter OCTN2. In contrast, in carnitine deficient rats, carnitine transport into isolated brush border membrane vesicles was increased 1.9-fold compared to untreated control rats. Similarly, renal mRNA expression of OCTN2 increased by a factor of 1.7 in carnitine deficient rats, whereas OCTN2 mRNA expression remained unchanged in gut, liver or skeletal muscle. Our study supports the hypothesis that a decrease in the carnitine plasma and/or glomerular filtrate concentration increases renal expression and activity of OCTN2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brush border myosin-I (BBM-I) is a single-headed unconventional myosin found in the microvilli of intestinal epithelial cells. We used stopped-flow kinetic analysis to measure the rate and equilibrium constants for several steps in the BBM-I ATPase cycle. We determined the rates for ATP binding to BBM-I and brush border actomyosin-I (actoBBM-I), the rate of actoBBM-I dissociation by ATP, and the rates for the steps in ADP dissociation from actoBBM-I. The rate and equilibrium constants for several of the steps in the actoBBM-I ATPase are significantly different from those of other members of the myosin superfamily. Most notably, dissociation of the actoBBM-I complex by ATP and release of ADP from actoBBM-I are both very slow. The slow rates of these steps may play a role in lengthening the time spent in force-generating states and in limiting the maximal rate of BBM-I motility. In addition, release of ADP from the actoBBM-I complex occurs in at least two steps. This study provides evidence for a member of the myosin superfamily with markedly divergent kinetic behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detergent-insoluble complexes prepared from pig small intestine are highly enriched in several transmembrane brush border enzymes including aminopeptidase N and sucrase-isomaltase, indicating that they reside in a glycolipid-rich environment in vivo. In the present work galectin-4, an animal lectin lacking a N-terminal signal peptide for membrane translocation, was discovered in these complexes as well, and in gradient centrifugation brush border enzymes and galectin-4 formed distinct soluble high molecular weight clusters. Immunoperoxidase cytochemistry and immunogold electron microscopy showed that galectin-4 is indeed an intestinal brush border protein; we also localized galectin-4 throughout the cell, mainly associated with membraneous structures, including small vesicles, and to the rootlets of microvillar actin filaments. This was confirmed by subcellular fractionation, showing about half the amount of galectin-4 to be in the microvillar fraction, the rest being associated with insoluble intracellular structures. A direct association between the lectin and aminopeptidase N was evidenced by a colocalization along microvilli in double immunogold labeling and by the ability of an antibody to galectin-4 to coimmunoprecipitate aminopeptidase N and sucrase-isomaltase. Furthermore, galectin-4 was released from microvillar, right-side-out vesicles as well as from mucosal explants by a brief wash with 100 mM lactose, confirming its extracellular localization. Galectin-4 is therefore secreted by a nonclassical pathway, and the brush border enzymes represent a novel class of natural ligands for a member of the galectin family. Newly synthesized galectin-4 is rapidly “trapped” by association with intracellular structures prior to its apical secretion, but once externalized, association with brush border enzymes prevents it from being released from the enterocyte into the intestinal lumen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myosins I, a ubiquitous monomeric class of myosins that exhibits actin-based motor properties, are associated with plasma and/or vesicular membranes and have been suggested as players for trafficking events between cell surface and intracellular membranous structures. To investigate the function of myosins 1, we have transfected a mouse hepatoma cell line (BWTG3) with cDNAs encoding the chicken brush border myosin-I (BBMI) and two variants truncated in the motor domain. One variant is deleted of the first 446 amino acids and thereby lacks the ATP binding site, whereas the other is deleted of the entire motor domain and lacks the ATP and actin binding sites. We have observed (i) that significant amounts of the truncated variants are recovered with membrane fractions after cell fractionation, (ii) that they codistribute with a compartment containing alpha2-macroglobulin internalized for 30 min as determined by fluorescent microscopy, (iii) that the production of BBMI-truncated variants impairs the distribution of the acidic compartment and ligands internalized for 30 min, and (iv) that the production of the truncated variant containing the actin binding site decreases the rate of alpha2-macroglobulin degradation whereas the production of the variant lacking the ATP binding site and the actin binding site increases the rate of a2-macroglobulin degradation. These observations indicate that the two truncated variants have a dominant negative effect on the distribution and the function of the endocytic compartments. We propose that an unidentified myosin-I might contribute to the distribution of endocytic compartments in a juxtanuclear position and/or to the regulation of the delivery of ligands to the degradative compartment in BWTG3 cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Na+-phosphate (Pi) cotransport across the renal brush border membrane is the rate limiting step in the overall reabsorption of filtered Pi. Murine and human renal-specific cDNAs (NaPi-7 and NaPi-3, respectively) related to this cotransporter activity (type II Na+-Pi cotransporter) have been cloned. We now report the cloning and characterization of the corresponding mouse (Npt2) and human (NPT2) genes. The genes were cloned by screening mouse genomic and human chromosome 5-specific libraries, respectively. Both genes are approximately 16 kb and are comprised of 13 exons and 12 introns, the junctions of which conform to donor and acceptor site consensus sequences. Putative CAAT and TATA boxes are located, respectively, at positions -147 and -40 of the Npt2 gene and -143 and -51 of the NPT2 gene, relative to nucleotide 1 of the corresponding cDNAs. The translation initiation site is within exon 2 of both genes. The first 220 bp of the mouse and human promoter regions exhibit 72% identity. Two transcription start sites (at positions -9 and - 10 with respect to nucleotide 1 of NaPi-7 cDNA) and two polyadenylylation signals were identified in the Npt2 gene by primer extension, 5' and 3' rapid amplification of cDNA ends (RACE). A 484-bp 5' flanking region of the Npt2 gene, comprising the CAAT box, TATA box, and exon 1, was cloned upstream of a luciferase reporter gene; this construct significantly stimulated luciferase gene expression, relative to controls, when transiently transfected into OK cells, a renal cell line expressing type II Na+ -Pi cotransporter activity. The present data provide a basis for detailed analysis of cis and trans elements involved in the regulation of Npt2/NPT2 gene transcription and facilitate screening for mutations in the NPT2 gene in patients with autosomally inherited disorders of renal Pi reabsorption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 20-mer phosphorothioate oligonucleotide (AS1) was designed to hybridize to the message for the rat kidney sodium phosphate cotransporter NaPi-2 close to the translation initiation site. Single intravenous doses of this oligonucleotide were given to rats maintained on a low phosphorus diet to increase NaPi-2 expression. At 3 days after oligonucleotide infusion, rats receiving 2.5 micromol of AS1 exhibited a reduction in renal NaPi-2 to cyclophilin mRNA ratio by 40% +/- 17%, and rats receiving 7.5 micromol of AS1 exhibited a reduction in NaPi-2 to cyclophilin mRNA ratio by 46% +/- 21%. Reversed-sequence AS1 was without effect. The higher dose of 7.5 micromol of AS1 also reduced the rate of phosphate uptake into renal brush border membrane vesicles and the expression of NaPi-2 protein detected by Western blotting in these vesicles. Reversed sequence AS1 was again without effect on these parameters. These results suggest that systemically infused oligonucleotides can exert antisense effects in the renal proximal tubule.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disruption of the renal proximal tubule (PT) brush border is a prominent early event during ischemic injury to the kidney. The molecular basis for this event is unknown. Within the brush border, ezrin may normally link the cytoskeleton to the cell plasma membrane. Anoxia causes ezrin to dissociate from the cytoskeleton and also causes many cell proteins to become dephosphorylated in renal PTs. This study examines the hypothesis that ezrin dephosphorylation accompanies and may mediate the anoxic disruption of the rabbit renal PT. During normoxia, 73 +/- 3% of the cytoskeleton-associated (Triton-insoluble) ezrin was phosphorylated, but 88 +/- 6% of dissociated (Triton-soluble) ezrin was dephosphorylated. Phosphorylation was on serine/threonine resides, since ezrin was not detectable by an antibody against phosphotyrosine. After 60 min of anoxia, phosphorylation of total intracellular ezrin significantly decreased from 72 +/- 2% to 21 +/- 9%, and ezrin associated with the cytoskeleton decreased from 91 +/- 2% to 58 +/- 2%. Calyculin A (1 microM), the serine/threonine phosphatase inhibitor, inhibited the dephosphorylation of ezrin during anoxia by 57% and also blocked the dissociation of ezrin from the cytoskeleton by 53%. Our results demonstrate that (i) the association of ezrin with the renal microvillar cytoskeleton is correlated with phosphorylation of ezrin serine/threonine residues and (ii) anoxia may cause disruption of the renal brush border by dephosphorylating ezrin and thereby dissociating the brush border membrane from the cytoskeleton.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The renal sodium-sulfate cotransporter, NaSi-1, a protein implicated to control serum sulfate levels, has been shown to be regulated in vivo by 1,25-dihydroxyvitamin D-3 (1,25-(OH)(2)D-3) and tri-iodothyronine (T-3). Recently, we cloned the mouse NaSi-1 gene (Nas1) and in the present study identified a 1,25-(OH)(2)D-3- and T-3-responsive element located within the Nas1 promoter. Mutational analysis of the Nas1 promoter resulted in identification of a direct repeat 6-type vitamin-D-responsive element (DR6 VDRE) at -525 to -508 and an imperfect inverted repeat 0-type T-3-responsive element (IR0 T3RE) at -436 to -425 which conferred 1,25(OH)(2)D-3 and T3 responsiveness, respectively. In summary, we have identified responsive elements that mediate the enhanced transcription of Nas1 by 1,25-(OH)(2)D-3 and T-3, and these mechanisms may provide important clues to the physiological control of sulfate homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inorganic sulfate is one of the most abundant anions in mammalian plasma and is essential for proper cell growth and development, as well as detoxification and activation of many biological compounds. To date, little is understood how physiological levels of sulfate are maintained in the body. Our studies, and of others, have identified the NAS(i)-1 protein to be a functional sulfate transporter in the kidney and intestine, and due to this localization, constitutes a strong candidate gene for maintaining body sulfate homeostasis. Several factors, including hormones and metabolic conditions, have been shown to alter NAS(i)-1 mRNA and protein levels in vivo. In this study, we describe the transcriptional regulation of NaSi-1, with a focus on the mouse NaSi-1 gene (Nas1) that was recently cloned in our laboratory. Vitamin D (1,25-(OH)(2)D-3) and thyroid hormone (T-3) led to an increase in Nas1 promoter activity in OK cells. Mutational analysis of the Nas1 promoter resulted in identification of a direct repeat 6-type vitamin-D-responsive element (DR6 VDRE) at -525 to -508 and an imperfect inverted repeat 0-type T-3 responsive element (IRO T3RE) at -426 to -425 which conferred 1,25-(OH)(2)D-3 and T-3 responsiveness respectively. These findings suggest for vitamin D and thyroid hormone regulation of NaSi-1, may provide important clues to the physiological control of sulfate homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Na+/H+ exchanger isoform 3 (NHE3) is essential for HCO3- reabsorption in renal proximal tubules. The expression and function of NHE3 must adapt to acid-base conditions. The goal of this study was to elucidate the mechanisms responsible for higher proton secretion in proximal tubules during acidosis and to evaluate whether there are differences between metabolic and respiratory acidosis with regard to NHE3 modulation and, if so, to identify the relevant parameters that may trigger these distinct adaptive responses. We achieved metabolic acidosis by lowering HCO3- concentration in the cell culture medium and respiratory acidosis by increasing CO2 tension in the incubator chamber. We found that cell-surface NHE3 expression was increased in response to both forms of acidosis. Mild (pH 7.21 +/- 0.02) and severe (6.95 +/- 0.07) metabolic acidosis increased mRNA levels, at least in part due to up-regulation of transcription, whilst mild (7.11 +/- 0.03) and severe (6.86 +/- 0.01) respiratory acidosis did not up-regulate NHE3 expression. Analyses of the Nhe3 promoter region suggested that the regulatory elements sensitive to metabolic acidosis are located between -466 and -153 bp, where two consensus binding sites for SP1, a transcription factor up-regulated in metabolic acidosis, were localised. We conclude that metabolic acidosis induces Nhe3 promoter activation, which results in higher mRNA and total protein level. At the plasma membrane surface, NHE3 expression was increased in metabolic and respiratory acidosis alike, suggesting that low pH is responsible for NHE3 displacement to the cell surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The constitutive reuptake of albumin from the glomerular filtrate by receptor-mediated endocytosis is a key function of the renal proximal tubules. Both the Cl- channel ClC-5 and the Na+-H+ exchanger isoform 3 are critical components of the macromolecular endocytic complex that is required for albumin uptake, and therefore the cell-surface levels of these proteins may limit albumin endocytosis. This study was undertaken to investigate the potential roles of the epithelial PDZ scaffolds, Na+-H+ exchange regulatory factors, NHERF1 and NHERF2, in albumin uptake by opossum kidney ( OK) cells. We found that ClC-5 co-immunoprecipitates with NHERF2 but not NHERF1 from OK cell lysate. Experiments using fusion proteins demonstrated that this was a direct interaction between an internal binding site in the C terminus of ClC-5 and the PDZ2 module of NHERF2. In OK cells, NHERF2 is restricted to the intravillar region while NHERF1 is located in the microvilli. Silencing NHERF2 reduced both cell-surface levels of ClC-5 and albumin uptake. Conversely, silencing NHERF1 increased cell-surface levels of ClC-5 and albumin uptake, presumably by increasing the mobility of NHE3 in the membrane and its availability to the albumin uptake complex. Surface biotinylation experiments revealed that both NHERF1 and NHERF2 were associated with the plasma membrane and that NHERF2 was recruited to the membrane in the presence of albumin. The importance of the interaction between NHERF2 and the cytoskeleton was demonstrated by a significant reduction in albumin uptake in cells overexpressing an ezrin binding-deficient mutant of NHERF2. Thus NHERF1 and NHERF2 differentially regulate albumin uptake by mechanisms that ultimately alter the cell-surface levels of ClC-5.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Renal ischemia/reperfusion (I/R) injury is one of the frequent causes of acute renal failure (ARF) due to the complex, interrelated sequence of events, that result in damage to and death of kidney cells. Cells of the proximal tubular epithelium are especially susceptible to I/R injury, leading to acute tubular necrosis, which plays a pivotal role in the pathogenesis of ARE Several models have been explicated to assess morphological changes, including those of Jabonski et al. and Goujon et al. We compared the 2 models for histopathological evaluation of 30- or 120-minute periods of renal ischemia followed by 24-hour reperfusion in rats. Several changes were observed after application of the 2 models: proximal tubular cell necrosis, loss of brush border, vacuolization, denudation of tubular basement membrane as a consequence of flattening of basal cells, and presence of intratubular exfoliated cells in the lumen of proximal convoluted tubules at various stages of degeneration (karyorexis, kariopyknosis and karyolysis). Evaluating tubular lesions after 2 periods of experimental ischemia with light microscopy allowed us to conclude that the Goujon classification better characterized the main changes in cortical renal tubules after ischemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Potassium (K) deficiency (KD) and/or hypokalemia have been associated with disturbances of phosphate metabolism The purpose of the present study was to determine the cellular mechanisms that mediate the impairment of renal proximal tubular Na/Pi cotransport in a model of K deficiency in the rat. Methods. K deficiency in the rat was achieved by feeding rats a K-deficient diet for seven days. which resulted in a marked decrease in serum and tissue K content. Results. K deficiency resulted in a marked increase in urinary Pi excretion and a decrease in the V-max of brush-border membrane (BBM) Na/Pi cotransport activity (1943 95 in control vs. 1183 +/- 99 pmol/5 sec/mg BBM protein in K deficiency. P < 0.02). Surprisingly. the decrease in Na/Pi cotransport activity was associated with increases in the abundance of type I (NaPi-1). and type II (NaPi-2) and type III (Glvr-1) Na/Pi protein. The decrease in Na/Pi transport was associated with significant alterations in BBM lipid composition, including increases in sphingomyelin. glucosylceramide. and ganglioside GM, content and a decrease in BBM lipid fluidity. Inhibition of glucosylceramide synthesis resulted in increases in BBM Na/Pi cotransport activity in control and K-deficient rats. The resultant Na/Pi cotransport activity in K-deficit nt rats was the same as in control rats (1148 +/- 52 in control + PDMP vs. 11.52 +/- 61 pmol/5 sec/mg BBM protein in K deficiency + PDMP). These changes in transport activity occurred independent of further changes in BBM NaPi-2 protein or renal cortical NaPi-2 mRNA abundance. Conclusion. K deficiency in the rat causes inhibition of renal Na/Pi cotransport activity by post-translational mechanisms that are mediated in part through alterations in glucosylceramide content and membrane lipid dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Familial renal glucosuria (FRG) is a rare co -dominantly inherited benign phenotype characterized by the presence of glucose in the urine. It is caused by mutations in the SLC5A2 gene that encodes SGLT2, a Na+ -glucose co -transporter. The purpose of our current work was twofold: to characterize the molecular and phenotype findings of an FRG cohort and, in addition, to detail the SGLT2 expression in the adult human kidney. The phenotype of FRG pedigrees was evaluated using direct sequencing for the identification of sequence variations in the SLC5A2 gene. The expression of SGLT2 in the adult human kidney was studied by immunofluorescence on kidney biopsy specimens. In the absence of renal biopsies from FRG individuals, and in order to evaluate the potential disruption of SGLT2 expression in a glucosuric nephropathy, we have selected cases of nucleoside analogues induced proximal tubular toxicity. We identified six novel SLC5A2 mutations in six FRG pedigrees and described the occurrence of hyperuricosuria associated with hypouricaemia in the two probands with the most severe phenotypes. Histopathological studies proved that SGLT2 is localized to the brush -border of the proximal tubular epithelia cell and that this normal pattern was found to be disrupted in cases of nucleoside analogues induced tubulopathy. We present six novel SLC5A2 mutations, further contributing to the allelic heterogeneity in FRG, and identified hyperuricosuria and hypouricaemia as part of the FRG phenotype. SGLT2 is localized to the brush -border of the proximal tubule in the adult human normal kidney, and aberrant expression of the co -transporter may underlie the glucosuria seen with the use of nucleoside analogues.