939 resultados para Relatividade geral
Resumo:
Pós-graduação em Física - IFT
Resumo:
The constancy of the speed of light appears to be an unbreakable barrier for future interstellar journeys, tending to infinite energy would be needed to achieve such speed. However in the general relativity one can circumvent this limit and get arbitrarily higher global speeds, without violating the constancy of the speed of light. The so-called “warp-drive metrics is a theoretical means to achieve global superluminal speeds. The Alcubierre metric is one case in which the science fiction inspired reality, from which was drawn the term “warp-drive. In the present work, a study of the theories of special and general relativity and of some works on solutions that allow superluminal speeds will be done
Resumo:
The flow of Ricci is an analytical tool, and a similar equation for heat geometry, a diffusive process which acts on a variety of metrics Riemannian and thus can be used in mathematics to understand the topology of varieties and also in the study geometric theories. Thus, the Ricci curvature plays an important role in the General Theory of Relativity, characterized as a geometric theory, which is the dominant term in the Einstein field equations. The present work has as main objectives to develop and apply Ricci flow techniques to general relativity, in this case, a three-dimensional asymptotically flat Riemannian metric as a set of initial data for Einstein equations and establish relations and comparisons between them.
Resumo:
Neste trabalho foi feito um estudo do limite de Karlhede para ondas pp. Para este fim, uma revisão rigorosa de Geometria Diferencial foi apresentada numa abordagem independente de sistemas de coordenadas. Além da abordagem usual, a curvatura de uma variedade riemanniana foi reescrita usando os formalismos de referenciais, formas diferenciais e espinores do grupo de Lorentz. O problema de equivalência para geometrias riemannianas foi formulado e as peculiaridades de sua aplicação é a Relatividade Geral são delineadas. O limite teórico de Karlhede para espaços-tempo de vácuo de tipo Petrov N foi apresentado. Esse limite é estudado na prática usando técnicas espinores e as condições para sua existência são resolvidas sem a introdução de sistemas de coordenadas.
Resumo:
O objetivo desta tese é verificar se algumas soluções de matéria da teoria da relatividade geral também satisfazem as equações da teoria de Horava-Lifshitz no limite infravermelho. Para isso, partimos das soluções mais simples possíveis, tais como é o caso de um fluido de radiação nula e de poeira, conhecidas na relatividade geral, e encontramos que estas não correspondem a quaisquer soluções na teoria de gravitação de Hořava-Lifshitz para o limite de baixas energias, infravermelho, no qual esta teoria deveria se reduzir à anterior. Este resultado nos remete a novos desafios na direção de ajustes teóricos que permitam que esta teoria descreva corretamente tanto o cenário cosmológico quanto o de formação de estruturas, estáveis ou colapsadas. Para tornar o trabalho mais claro, é feita uma introdução à teoria de Hořava- Lifshitz, tema central deste trabalho, e como ela se acopla com a matéria.
Resumo:
In the Einstein s theory of General Relativity the field equations relate the geometry of space-time with the content of matter and energy, sources of the gravitational field. This content is described by a second order tensor, known as energy-momentum tensor. On the other hand, the energy-momentum tensors that have physical meaning are not specified by this theory. In the 700s, Hawking and Ellis set a couple of conditions, considered feasible from a physical point of view, in order to limit the arbitrariness of these tensors. These conditions, which became known as Hawking-Ellis energy conditions, play important roles in the gravitation scenario. They are widely used as powerful tools for analysis; from the demonstration of important theorems concerning to the behavior of gravitational fields and geometries associated, the gravity quantum behavior, to the analysis of cosmological models. In this dissertation we present a rigorous deduction of the several energy conditions currently in vogue in the scientific literature, such as: the Null Energy Condition (NEC), Weak Energy Condition (WEC), the Strong Energy Condition (SEC), the Dominant Energy Condition (DEC) and Null Dominant Energy Condition (NDEC). Bearing in mind the most trivial applications in Cosmology and Gravitation, the deductions were initially made for an energy-momentum tensor of a generalized perfect fluid and then extended to scalar fields with minimal and non-minimal coupling to the gravitational field. We also present a study about the possible violations of some of these energy conditions. Aiming the study of the single nature of some exact solutions of Einstein s General Relativity, in 1955 the Indian physicist Raychaudhuri derived an equation that is today considered fundamental to the study of the gravitational attraction of matter, which became known as the Raychaudhuri equation. This famous equation is fundamental for to understanding of gravitational attraction in Astrophysics and Cosmology and for the comprehension of the singularity theorems, such as, the Hawking and Penrose theorem about the singularity of the gravitational collapse. In this dissertation we derive the Raychaudhuri equation, the Frobenius theorem and the Focusing theorem for congruences time-like and null congruences of a pseudo-riemannian manifold. We discuss the geometric and physical meaning of this equation, its connections with the energy conditions, and some of its several aplications.
Resumo:
In this work we obtain the cosmological solutions and investigate the thermodynamics of matter creation in two diferent contexts. In the first we propose a cosmological model with a time varying speed of light c. We consider two diferent time dependence of c for a at Friedmann-Robertson- Walker (FRW) universe. We write the energy conservation law arising from Einstein equations and study how particles are created as c decreases with cosmic epoch. The variation of c is coupled to a cosmological Λ term and both singular and non-singular solutions are possible. We calculate the "adiabatic" particle creation rate and the total number of particles as a function of time and find the constrains imposed by the second law of thermodynamics upon the models. In the second scenario, we study the nonlinearity of the electrodynamics as a source of matter creation in the cosmological models with at FRW geometry. We write the energy conservation law arising from Einstein field equations with cosmological term Λ, solve the field equations and study how particles are created as the magnetic field B changes with cosmic epoch. We obtain solutions for the adiabatic particle creation rate, the total number of particles and the scale factor as a function of time in three cases: Λ = 0, Λ = constant and Λ α H2 (cosmological term proportional to the Hubble parameter). In all cases, the second law of thermodynamics demands that the universe is not contracting (H ≥ 0). The first two solutions are non-singular and exhibit in ationary periods. The third case studied allows an always in ationary universe for a suficiently large cosmological term
Resumo:
Many astronomical observations in the last few years are strongly suggesting that the current Universe is spatially flat and dominated by an exotic form of energy. This unknown energy density accelerates the universe expansion and corresponds to around 70% of its total density being usually called Dark Energy or Quintessence. One of the candidates to dark energy is the so-called cosmological constant (Λ) which is usually interpreted as the vacuum energy density. However, in order to remove the discrepancy between the expected and observed values for the vacuum energy density some current models assume that the vacuum energy is continuously decaying due to its possible coupling with the others matter fields existing in the Cosmos. In this dissertation, starting from concepts and basis of General Relativity Theory, we study the Cosmic Microwave Background Radiation with emphasis on the anisotropies or temperature fluctuations which are one of the oldest relic of the observed Universe. The anisotropies are deduced by integrating the Boltzmann equation in order to explain qualitatively the generation and c1assification of the fluctuations. In the following we construct explicitly the angular power spectrum of anisotropies for cosmologies with cosmological constant (ΛCDM) and a decaying vacuum energy density (Λ(t)CDM). Finally, with basis on the quadrupole moment measured by the WMAP experiment, we estimate the decaying rates of the vacuum energy density in matter and in radiation for a smoothly and non-smoothly decaying vacuum
Resumo:
In this dissertation, after a brief review on the Einstein s General Relativity Theory and its application to the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological models, we present and discuss the alternative theories of gravity dubbed f(R) gravity. These theories come about when one substitute in the Einstein-Hilbert action the Ricci curvature R by some well behaved nonlinear function f(R). They provide an alternative way to explain the current cosmic acceleration with no need of invoking neither a dark energy component, nor the existence of extra spatial dimensions. In dealing with f(R) gravity, two different variational approaches may be followed, namely the metric and the Palatini formalisms, which lead to very different equations of motion. We briefly describe the metric formalism and then concentrate on the Palatini variational approach to the gravity action. We make a systematic and detailed derivation of the field equations for Palatini f(R) gravity, which generalize the Einsteins equations of General Relativity, and obtain also the generalized Friedmann equations, which can be used for cosmological tests. As an example, using recent compilations of type Ia Supernovae observations, we show how the f(R) = R − fi/Rn class of gravity theories explain the recent observed acceleration of the universe by placing reasonable constraints on the free parameters fi and n. We also examine the question as to whether Palatini f(R) gravity theories permit space-times in which causality, a fundamental issue in any physical theory [22], is violated. As is well known, in General Relativity there are solutions to the viii field equations that have causal anomalies in the form of closed time-like curves, the renowned Gödel model being the best known example of such a solution. Here we show that every perfect-fluid Gödel-type solution of Palatini f(R) gravity with density and pressure p that satisfy the weak energy condition + p 0 is necessarily isometric to the Gödel geometry, demonstrating, therefore, that these theories present causal anomalies in the form of closed time-like curves. This result extends a theorem on Gödel-type models to the framework of Palatini f(R) gravity theory. We derive an expression for a critical radius rc (beyond which causality is violated) for an arbitrary Palatini f(R) theory. The expression makes apparent that the violation of causality depends on the form of f(R) and on the matter content components. We concretely examine the Gödel-type perfect-fluid solutions in the f(R) = R−fi/Rn class of Palatini gravity theories, and show that for positive matter density and for fi and n in the range permitted by the observations, these theories do not admit the Gödel geometry as a perfect-fluid solution of its field equations. In this sense, f(R) gravity theory remedies the causal pathology in the form of closed timelike curves which is allowed in General Relativity. We also examine the violation of causality of Gödel-type by considering a single scalar field as the matter content. For this source, we show that Palatini f(R) gravity gives rise to a unique Gödeltype solution with no violation of causality. Finally, we show that by combining a perfect fluid plus a scalar field as sources of Gödel-type geometries, we obtain both solutions in the form of closed time-like curves, as well as solutions with no violation of causality
Resumo:
The so-called gravitomagnetic field arised as an old conjecture that currents of matter (no charges) would produce gravitational effects similar to those produced by electric currents in electromagnetism. Hans Thirring in 1918, using the weak field approximation to the Einsteins field equations, deduced that a slowly rotating massive shell drags the inertial frames in the direction of its rotation. In the same year, Joseph Lense applied to astronomy the calculations of Thirring. Later, that effect came to be known as the Lense- Thirring effect. Along with the de Sitter effect, those phenomena were recently tested by a gyroscope in orbit around the Earth, as proposed by George E. Pugh in 1959 and Leonard I. Schiff in 1960. In this dissertation, we study the gravitational effects associated with the rotation of massive bodies in the light of the Einsteins General Theory of Relativity. With that finality, we develop the weak field approximation to General Relativity and obtain the various associated gravitational effects: gravitomagnetic time-delay, de Sitter effect (geodesic precession) and the Lense-Thirring effect (drag of inertial frames). We discus the measures of the Lense-Thirring effect done by LAGEOS Satellite (Laser Geodynamics Satellite) and the Gravity Probe B - GPB - mission. The GPB satellite was launched into orbit around the Earth at an altitude of 642 km by NASA in 2004. Results presented in May 2011 clearly show the existence of the Lense-Thirring effect- a drag of inertial frames of 37:2 7:2 mas/year (mas = milliarcsec)- and de Sitter effect - a geodesic precession of 6; 601:8 18:3 mas/year- measured with an accuracy of 19 % and of 0.28 % respectively (1 mas = 4:84810��9 radian). These results are in a good agreement with the General Relativity predictions of 41 mas/year for the Lense-Thirring effect and 6,606.1 mas/year for the de Sitter effect.
Resumo:
Fazemos aqui uma breve descrição da teoria semiclássica da gravitação que tem conseguido antecipar de forma bastante robusta alguns efeitos de gravitação quântica.
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Pós-graduação em Física - IFT