881 resultados para Reineck.
Resumo:
Investigations of the rearrangement of material in Neuwerk/Scharhom flat showed that with the exception of the western border/edge and the parts of the Elbe and Oste shores/banks which lie most seawards, the entire mudflat area is only infrequently exposed to strong hydraulic forces. Only in extreme conditions, which on average occur rarely more than once a year, would the mudflats be severely affected. This partial translation provides the summary of the original article only.
Resumo:
Objetivos: Identificar predictores de recuperación de la función ventricular izquierda y comparar los hallazgos ecocardiográficos en pacientes con estenosis aórtica crítica sometidos a reemplazo quirúrgico de la válvula aórtica (RVA) o implantación de válvula aórtica transcatéter (TAVI). Métodos: Cuarenta y cuatro pacientes tratados con RVA se compararon con 34 pacientes con TAVI, los datos ecocardiográficos fueron retrospectivamente obtenidos antes de la intervención y previo al alta. Resultados: Se analizaron retrospectivamente pacientes tratados en la FCI - IC desde 2009 - 2015 (n = 78 pacientes, con una media de edad 70,29 ± 11,63, EuroSCORE logístico 3,75 (3-8,55) en RVA y 20,4 (15 , 47-23,32) en TAVI. Ambos grupos mostraron una disminución en los gradientes de la válvula aórtica, más en pacientes de TAVI, con un gradiente transaórtico pico (24,5 vs 18,5, p = 0,001) y medio (14 vs 10, p = 0,002) En comparación con RVA, TAVI presentó un mayor número de pacientes con insuficiencia aórtica paravalvular (47,1% frente a 2,3% p = 0.000). En total, el 61,5% presentó mejoría precoz de la función ventricular, el predictor en severo compromiso de la función del ventrículo izquierdo fue un alto índice de masa ventricular izquierda. Conclusiones: La implantación transcatéter de válvula aórtica es una alternativa al reemplazo quirúrgico de la válvula aórtica en pacientes con estenosis aórtica y alto riesgo quirúrgico. La recuperación postoperatoria precoz de la función ventricular izquierda en pacientes con severo compromiso de la función ventricular estuvo asociada a alto índice de masa ventricular izquierda.
Resumo:
Welsch (Projektbearbeiter): Einladung an die Wahlglieder der Berliner Wahlbezirke 42 bis 45 und 48 zur Vorberatung über die Ausübung des Urwählerrechts für die erste Kammer
Resumo:
Von Benno Gaude u. Georg Reineck
Resumo:
Von Georg Reineck und Benno Gaude
Resumo:
During "Meteor" Cruise 6/1966 in the northwest Atlantic a systematic survey of the bottom topography of the southeast Greenland continental margin was undertaken. Eighty-seven profiles transverse to the shelf edge at distances of 3-4 nautical miles and two longitudinal profiles parallel to the coast were carried out with the ELAC Narrow Beam Echo-Sounder giving a reliable record of even steep slopes. On the basis of the echo soundings the topography and morphology of the continental shelf and slope are evaluated. A detailed bathymetric chart and a serial profile chart were designed as working material for the morphological research. These maps along with the original echograms are morphometrically evaluated. The analysis of the sea bottom features is the basis of a subsequent morphogenetical interpretation, verified and extended by means of interpretation of magnetic data and sediment analysis (grain size, roundness, lithology). The results of the research are expressed in a geomorphological map. The primary findings can be summarized as follows: 1) The southeast Greenland shelf by its bottom topography can be clearly designated as a glacially formed area. The glacial features of the shelf can be classified into two zones nearly parallel to the coast: glacial erosion forms on the inner shelf and glacial accumulation forms on the outer shelf. The inner shelf is characterized by the rugged and hummocky topography of ice scoured plains with clear west/east slope asymmetry. On the outer shelf three types of glacial accumulation forms can be recognized: ice margin deposits with clearly expressed terminal moraines, glacial till plains and glaciomarine outwash fans. Both zones of the shelf can be subdivided into two levels of relief. The ice scoured plains, with average depths of 240 meters (m), are dissected to a maximum depth of 1060 m (Gyldenloves Trough) by trough valleys, which are the prolongations of the Greenland fjords. The banks of the outer shelf, with an average depth of 180 m, surround glacial basins with a maximum depth of 670 meters. 2) The sediments of the continental shelf can be classified as glacial due to their grain size distribution and the degree of roundness of the gravel particles. The ice margin deposits on the outer shelf can be recognized by their high percentage of gravels. On the inner shelf a rock surface is suggested, intermittently covered by glacial deposits. In the shelf troughs fine-grained sediments occur mixed with gravels. 3) Topography and sediments show that the southeast Greenland shelf was covered by an ice sheet resting on the sea floor during the Pleistocene ice-age. The large end moraines along the shelf edge probably indicate the maximum extent of the Wurm shelf ice resting on the sea floor. The breakthroughs of the end moraines in front of the glacial basins suggest that the shelf ice has floated further seaward over the increasing depths. 4) Petrographically the shelf sediments consist of gneisses, granites and basalts. While gneisses and granites occire on the nearby coast, basalt is not known to exist here. Either this material has been drifted by icebergs from the basalt province to the north or exists on the southeast Greenland shelf itself. The last interpretation is supported bythe high portion of basalt contained in the sediment samples taken and the strong magnetic anomalies probably caused by basaltic intrusions. 5) A magnetic profile allows the recognition of two magnetically differing areas which approximately coincide with the glacial erosion and accumulation zones. The inner shelf shows a strong and variable magnetic field because the glacially eroded basement forms the sea floor. The outer shelf is characterized by a weak and homogenous magnetic field, as the magnetized basement lies at greater depthy, buried by a thick cover of glacial sediments. The strong magnetic anomalies of the inner shelf are probably caused by dike swarms, similar to those observed further to the north in the Kangerdlugssuaq Fjord region. This interpretation is supported by the high basalt content of the sediment samples and the rough topography of the ice scoured plains which correlates in general with the magnetic fluctuations. The dike structures of the basement have been differentially eroded by the shelf ice. 6) The continental slope, extending from the shelf break at 313 m to a depth of 1270 m with an average slope of 11°, is characterized by delta-shaped projections in front of the shelf basins, by marginal plateaus, ridges and hills, by canyons and slumping features. The projections could be identified as glaciomarine sediment fans. This conclusion is supported by the strong decrease of magnetic field intensity. The deep sea hills and ridges with their greater magnetic intensities have to be regarded as basement outcrops projecting through the glaciomarine sediment cover. The upper continental rise, sloping seaward at about 2°, is composed of wide sediment fans and slump material. A marginal depression on the continental rise running parallel to the shelf edge has been identified. In this depression bottom currents capable of erosion have been recorded. South of Cape Farvel the depression extends to the accumulation zone of the "Eirik" sedimentary ridge. 7) By means of a study of the recent marine processes, postglacial modification of the ice-formed relief can be postulated. The retention effect of the fjord troughs and the high velocity of the East Greenland stream prevents the glacial features from being buried by sediments. Bottom currents capable of active erosion have only been found in the marginal depression on the continental rise. In addition, at the time of the lowest glacio-eustatic sea level, the shelf bottom was not situated in the zone of wave erosion. Only on the continental slope and rise bottom currents, sediment slumps and turbidity currents have led to significant recent modifications. Considering these results, the geomorphological development of the southeast Greenland continental terrace can be suggested as follows: 1. initial formation of a "peneplain", 2. fluvial incision, 3. submergence, and finally 4. glacial modification.