969 resultados para Regeneration (Botany)
Resumo:
"Eingegangen bei der Akademie am 21 november 1895."
Resumo:
"September 1995."
Resumo:
Fragmentation and vegetative regeneration from small fragments may contribute to population expansion, dispersal and establishment of new populations of introduced plants. However, no study has systematically tested whether a high capacity of vegetative regeneration is associated with a high degree of invasiveness. For small single-node fragments, the presence of internodes may increase regeneration capacity because internodes may store carbohydrates and proteins that can be used for regeneration. We conducted an experiment with 39 stoloniferous plant species to examine the regeneration capacity of small, single-node fragments with or without attached stolon internodes. We asked (1) whether the presence of stolon internodes increases regeneration from single-node fragments, (2) whether regeneration capacity differs between native and introduced species in China, and (3) whether regeneration capacity is positively associated with plant invasiveness at a regional scale (within China) and at a global scale. Most species could regenerate from single-node fragments, and the presence of internodes increased regeneration rate and subsequent growth and/or asexual reproduction. Regeneration capacity varied greatly among species, but showed no relationship to invasiveness, either in China or globally. High regeneration capacity from small fragments may contribute to performance of clonal plants in general, but it does not appear to explain differences in invasiveness among stoloniferous clonal species
Resumo:
Millets are versatile in tolerating to diverse climatic and soil conditions such as poor soil fertility and moisture deficit. Establishing optimum regeneration method for each millet type and ecotype is a pre-requisite prior to embarking on plant transformation as successes in plant transformation is largely dependent on the efficiency of regeneration. Various studies made to identify optimum regeneration and transformation methods as well as prospects of applying advanced techniques to these vital but under-studied crops of developing world are discussed.
Resumo:
Tef [Eragrostis tef (Zucc.) Trotter] is the major cereal crop in the Horn of Africa particularly in Ethiopia where it is staple food for about 50 million people. Its resilience to extreme environmental conditions and high in nutrition makes tef the preferred crop among both farmers and consumers. The efficiency of in vitro regeneration plays significant role in the improvement of crops. We investigated the efficiency of regeneration in 18 tef genotypes (15 landraces and three improved varieties) using three sizes of immature embryos (small, intermediate and large) as an explant. In vitro regeneration was significantly affected by the genotype and the size of the immature embryo used as a donor. Intermediate-size immature embryos which were 101-350 µm long led to the highest percentage of regeneration. Interestingly, the three improved varieties presented very low regeneration efficiencies whereas the landrace Manyi resulted in consistently superior percentage of in vitro regeneration from all three sizes of explants. The findings of this work provide useful insight into the tef germplasm amenable for the regeneration technique which has direct application in techniques such as transformation. It also signifies the importance of using tef landraces instead of improved varieties for in vitro regeneration.
Resumo:
1. The cover of plant species was recorded annually from 1988 to 2000 in nine spatially replicated plots in a species-rich, semi-natural meadow at Negrentino (southern Alps). This period showed large climatic variation and included the centennial maximum and minimum frequency of days with ≥ 10 mm of rain. 2. Changes in species composition were compared between three 4-year intervals characterized by increasingly dry weather (1988–91), a preceding extreme drought (1992–95), and increasingly wet weather (1997–2000). Redundancy analysis and anova with repeated spatial replicates were used to find trends in vegetation data across time. 3. Recruitment capacity, the potential for fast clonal growth and seasonal expansion rate were determined for abundant taxa and tested in general linear models (GLM) as predictors for rates of change in relative cover of species across the climatically defined 4-year intervals. 4. Relative cover of the major growth forms present, graminoids and forbs, changed more in the period following extreme drought than at other times. Recruitment capacity was the only predictor of species’ rates of change. 5. Following perturbation, re-colonization was the primary driver of vegetation dynamics. The dominant grasses, which lacked high recruitment from seed, therefore decreased in relative abundance. This effect persisted until the end of the study and may represent a lasting response to an extreme climatic event.
Resumo:
The 12-month radial growth of Parmelia conspersa thalli with isidia or with apothecia and isidia was not influenced by removal of the thalli centres. When large thalli had their centres removed and the thallus perimeter was divided into fragments of about 1.0cm in diameter, growth of the fragments was less than the controls, but recovered to near control values after four or five months growth. These results suggest first, that fixed carbon for radial growth may be made in a narrow annulus at the perimeter and second, that there may be little transfer of fixed carbon between the annulus and the centre of the thallus ar around the annulus. Fragments of the centre and the perimeter regenerated growing points, suggesting that fragmentation may be an important method of vegetative reproduction in some lichens.
Resumo:
Callus was initiated in three different ‘‘esculenta’’ taro cultivars by culturing corm slices in the dark on half-strength MS medium supplemented with 2.0 mg/l 2,4- dichlorophenoxyacetic acid (2,4-D) for 20 days followed by subculture of all corm slices to half-strength MS medium containing 1.0 mg/l thidiazuron (TDZ). Depending on the cultivar, 20–30% of corm slices produced compact, yellow, nodular callus on media containing TDZ. Histological studies revealed the presence of typical embryogenic cells which were small, isodiametric with dense cytoplasms. Somatic embryos formed when callus was transferred to hormone-free medium and *72% of the embryos germinated into plantlets on this medium. Simultaneous formation of roots and shoots during germination, and the presence of shoot and root poles revealed by histology, confirmed that these structures were true somatic embryos. Plants derived from somatic embryos appeared phenotypically normal following 2 months growth in a glasshouse. This method is a significant advance on those previously reported for the esculenta cultivars of taro due to its efficiency and reproducibility.
Resumo:
Embryogenic callus was initiated by culturing in vitro taro corm slices on agar-solidified half-strength MS medium containing 2.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) for 20 days followed by transfer to 1.0 mg/L thidiazuron (TDZ). Callus was subsequently proliferated on solid medium containing 1.0 mg/L TDZ, 0.5 mg/L 2,4- D and 800 mg/L glutamine before transfer to liquid medium containing the same components but with reduced glutamine (100 mg/L). After 3 months in liquid culture on an orbital shaker, cytoplasmically dense cell aggregates began to form. Somatic embryogenesis was induced by plating suspension cells onto solid media containing reduced levels of hormones (0.1 mg/L TDZ, 0.05 mg/L 2,4-D), high concentrations of sucrose (40–50 g/L) and biotin (1.0 mg/L). Embryo maturation and germination was then induced on media containing 0.05 mg/L benzyladenine (BA) and 0.1 mg/L indole-3-acetic acid (IAA). Histological studies of the developing embryos revealed the presence of typical shoot and root poles suggesting that these structures were true somatic embryos. The rate of somatic embryos formation was 500–3,000 per mL settledcell volume while approximately 60% of the embryos regenerated into plants.
Resumo:
The aim of this study was to evaluate the healing of class III furcation defects following transplantation of autogenous periosteal cells combined with b-tricalcium phosphate (b-TCP). Periosteal cells obtained from Beagle dogs’ periosteum explant cultures, were inoculated onto the surface of b-TCP. Class III furcation defects were created in the mandibular premolars. Three experimental groups were used to test the defects’ healing: group A, b-TCP seeded with periosteal cells were transplanted into the defects; group B, b-TCP alone was used for defect filling; and group C, the defect was without filling materials. Twelve weeks post surgery, the tissue samples were collected for histology, immunohistology and X-ray examination. It was found that both the length of newly formed periodontal ligament and the area of newly formed alveolar bone in group A, were significantly increased compared with both group B and C. Furthermore, both the proportion of newly formed periodontal ligament and newly formed alveolar bone in group A were much higher than those of group B and C. The quantity of cementum and its percentage in the defects (group A) were also significantly higher than those of group C. These results indicate that autogenous periosteal cells combined with b-TCP application can improve periodontal tissue regeneration in class III furcation defects.