961 resultados para Reactivity of alpha-diazosulfoxides
Resumo:
Interaction of nickel(I1) and copper(I1) complexes of 4,9-dimethy1-5,8-diazadodeca-4,8diene-2,1 ldione, Ni(baen) and 4,6,9-trimethyl-5, 8diazadodeca-4,8-diene-2,ll-dione, Ni(bapn), with arene diazonium chlorides in buffered solutions of methanol yielded metal derivatives of glyoxaliminearylhydrazones. This typical electrophilic addition at the 3-carbon of the complex occurs owing to the pseudo aromatic behaviour of the chelate ring. A mechanism which predicts the attack of the diazonium cation through the coordination shell of the metal is well documented from the available experimental evidences. The chemical reactivity of a few complexes with a single residual non-substituted y-carbon is reasonably manifested by their reaction with phenyl isocyanate.
Resumo:
Development of novel synthetic methodology for selective transformation of organic compounds is a central element underpinning organic synthesis with control of chemo-, regio- and stereoselectivity a very high priority. Reactions which can be conducted under mild reaction conditions and, ideally in an environmentally attractive manner, are particularly advantageous. The principal objective of this thesis was to explore the synthesis, reactivity and synthetic utility of a series of α,β-thio-β-chloroenones. The stereochemical features of these transformations and the potential of this novel series of compounds in the synthesis of bioactive compounds were of particular interest. In exploring the reactivity of these compounds, the key transformations included nucleophilic additions and Stille cross-coupling at the β-carbon. Chapter 1 reviews the literature relevant to the research conducted, and focuses in particular on the synthesis of β-chloroenones and related unsaturated carbonyl compounds. The synthesis of chalcone compounds from various precursors is also discussed, with particular emphasis on the use of palladium cross-coupling reactions in the preparation of these compounds. The biological activity of chalcones is also summarised in this chapter. The second chapter delineates the stereoselective synthesis of the novel α-thio-β-chloroenones from the corresponding α-thioketones in a multistep reaction cascade initiated by a NCS-mediated chlorination. A range of both alkyl and aryl β-chloroenones were prepared in this work and the oxidation of these compounds to the corresponding sulfoxides and sulfones is also outlined. The electrophilicity of the β-carbon of the enones was examined in nucleophilic addition/substitution reactions with successful access to a variety of synthetically useful novel adducts including acetals and enaminoketones. Investigation of the synthetic potential of the Stille cross-coupling reaction with the novel α-thio-β-chloroenones was explored and provided an efficient route for the synthesis of a novel series of chalcones. Most importantly this new methodology provided a new and synthetically powerful approach for carbon-carbon bond formation at the β-carbon under mild neutral conditions. A preliminary investigation into the use of these β-chloroenones as dienophiles in Diels-Alder cycloaddition reactions is also discussed in this chapter. Chapter 2 also reports the nucleophilic addition of N, O, S and C nucleophiles to previously described β-chloroacrylamides and their corresponding sulfoxide derivatives. This work builds on previous research carried out in this programme and the reactivity of these β-chloroacrylamides at the sulfide and sulfoxide level is compared. Comparison of the reactivity of the β-chloroacrylamides, in nucleophilic substitution and Stille-coupling, with that of the novel β-chloroenones is of interest. Finally, the biological activity of both the β-chloroenones and the β-chloroacrylamides in terms of cytotoxicity is summarised in Chapter 2. The final chapter, Chapter 3, details the full experimental procedures, including spectroscopic and analytical data for the compounds prepared during this research.
Resumo:
The research described in this thesis focuses, principally, on synthesis of stable α-diazosulfoxides and investigation of their reactivity under various reaction conditions (transition-metal catalysed, photochemical, thermal and microwave) with a particular emphasis on the reactive intermediates and mechanistic aspects of the reaction pathways involved. In agreement with previous studies carried out on these compounds, the key reaction pathway of α-diazosulfoxides was found to be hetero-Wolff rearrangement to give α-oxosulfine intermediates. However, a competing reaction pathway involving oxygen migration from sulfur to oxygen was also observed. Critically, isomerisation of α-oxosulfine stereoisomers was observed directly by 1H NMR spectroscopy in this work and this observation accounts for the stereochemical outcomes of the various cycloaddition reactions, whether carried out with in situ trapping or with preformed solutions of sulfines. Furthermore, matrix isolation experiments have shown that electrocyclisation of α-oxosulfines to oxathiiranes takes place and this verifies the proposed mechanisms for enol and disulfide formation. The introductory chapter includes a brief literature review of the synthesis and reactivity of α-diazosulfoxides prior to the commencement of research in this field by the Maguire group. The Wolff rearrangement is also discussed and the characteristic reactions of a number of reactive intermediates (sulfines, sulfenes and oxathiiranes) are outlined. The use of microwave-assisted organic synthesis is also examined, specifically, in the context of α-diazocarbonyl compounds as substrates. The second chapter describes the synthesis of stable monocyclic and bicyclic lactone derivatives of α-diazosulfoxides from sulfide precursors according to established experimental procedures. Approaches to precursors of ketone and sulfimide derivatives of α-diazosulfoxides are also described. The third chapter examines the reactivity of α-diazosulfoxides under thermal, microwave, rhodium(II)-catalysed and photochemical conditions. Comparison of the results obtained under thermal and microwave conditions indicates that there was no evidence for any effect, other than thermal, induced by microwave irradiation. The results of catalyst studies involving several rhodium(II) carboxylate and rhodium(II) carboxamidate catalysts are outlined. Under photochemical conditions, sulfur extrusion is a significant reaction pathway while under thermal or transition metal catalysed conditions, oxygen extrusion is observed. One of the most important observations in this work was the direct spectroscopic observation (by 1H NMR) of interconversion of the E and Z-oxosulfines. Trapping of the α-oxosulfine intermediates as cycloadducts by reaction with 2,3-dimethyl-1,3-butadiene proved useful both synthetically and mechanistically. As the stereochemistry of the α-oxosulfine is retained in the cycloadducts, this provided an ideal method for characterisation of this key feature. In the case of one α-oxosulfine, a novel [2+2] cycloaddition was observed. Preliminary experiments to investigate the reactivity of an α-diazosulfone under rhodium(II) catalysis and microwave irradiation are also described. The fourth chapter describes matrix isolation experiments which were carried out in Rühr Universität, Bochum in collaboration with Prof. Wolfram Sander. These experiments provide direct spectroscopic evidence of an α-oxosulfine intermediate formed by hetero-Wolff rearrangement of an α-diazosulfoxide and subsequent cyclisation of the sulfine to an oxathiirane was also observed. Furthermore, it was possible to identify which stereoisomer of the α-oxosulfine was present in the matrix. A preliminary laser flash photolysis experiment is also discussed. The experimental details, including all spectral and analytical data, are reported at the end of each chapter. The structural interpretation of 1H NMR spectra of the cycloadducts, described in Chapter 3, is discussed in Appendix I.
Resumo:
The research described in this thesis focuses on the design and synthesis of stable α-diazosulfoxides and investigation of their reactivity under a variety of conditions (transition-metal catalysis, thermal, photochemical and microwave) with a particular emphasis on the synthesis of novel heterocyclic compounds with potential biological activity. The exclusive reaction pathway for these α-diazosulfoxides was found to be hetero-Wolff rearrangement to give α-oxosulfine intermediates. In the first chapter, a literature review of sulfines is presented, including a discussion of naturally occurring sulfines, and an overview of the synthesis and reactivity of sulfines. The potential of sulfines in organic synthesis and recent developments in particular are highlighted. The second chapter discusses the synthesis and reactivity of α-diazosulfoxides, building on earlier results in this research group. The synthesis of lactone-based α-diazosulfoxides and, for the first time, ketone-based benzofused and monocyclic α-diazosulfoxides is described. The reactivity of these α-diazosulfoxides is then explored under a variety of conditions, such as transition-metal catalysis, photochemical and microwave, generating labile α-oxosulfine intermediates, which are trapped using amines and dienes, in addition to the spontaneous reaction pathways which occur with α-oxosulfines in the absence of a trap. A new reaction pathway was explored with the lactone based α-oxosulfines, involving reaction with amines to generate novel 3-aminofuran-2(5H)-ones via carbophilic attack, in very good yields. The reactivity of ketone-based α-diazosulfoxides was explored for the first time, and once again, pseudo-Wolff rearrangement to the α-oxosulfines was the exclusive reaction pathway observed. The intermediacy of the α-oxosulfines was confirmed by trapping as cycloadducts, with the stereochemical features dependant on the reaction conditions. In the absence of a diene trap, a number of reaction fates from the α-oxosulfines were observed, including complete sulfinyl extrusion to give indanones, sulfur extrusion to give indanediones, and, to a lesser extent, dimerisation. The indanediones were characterised by trapping as quinoxalines, to enable full characterisation. One of the overriding outcomes of this thesis was the provision of new insights into the behaviour of α-oxosulfines with different transition metal catalysts, and under thermal, microwave and photolysis conditions. A series of 3-aminofuran-2(5H)-ones and benzofused dihydro-2H-thiopyran S-oxides were submitted for anticancer screening at the U.S. National Cancer Institute. A number of these derivatives were identified as hit compounds, with excellent cell growth inhibition. One 3-aminofuran-2(5H)-one derivative has been chosen for further screening. The third chapter details the full experimental procedures, including spectroscopic and analytical data for the compounds prepared during this research. The data for the crystal structures are contained in the attached CD.
Resumo:
Acetohydroxy acid synthases (AHAS) are thiamin diphosphate- (ThDP-) and FAD-dependent enzymes that catalyze the first common step of branched-chain amino acid biosynthesis in plants, bacteria, and fungi. Although the flavin cofactor is not chemically involved in the physiological reaction of AHAS, it has been shown to be essential for the structural integrity and activity of the enzyme. Here, we report that the enzyme-bound FAD in AHAS is reduced in the course of catalysis in a side reaction. The reduction of the enzyme-bound flavin during turnover of different substrates under aerobic and anaerobic conditions was characterized by stopped-flow kinetics using the intrinsic FAD absorbance. Reduction of enzyme-bound FAD proceeds with a net rate constant of k' = 0.2 s(-1) in the presence of oxygen and approximately 1 s(-1) under anaerobic conditions. No transient flavin radicals are detectable during the reduction process while time-resolved absorbance spectra are recorded. Reconstitution of the binary enzyme-FAD complex with the chemically synthesized intermediate 2-(hydroxyethyl)-ThDP also results in a reduction of the flavin. These data provide evidence for the first time that the key catalytic intermediate 2-(hydroxyethyl)ThDP in the carbanionic/enamine form is not only subject to covalent addition of 2-keto acids and an oxygenase side reaction but also transfers electrons to the adjacent FAD in an intramolecular redox reaction yielding 2-acetyl-ThDP and reduced FAD. The detection of the electron transfer supports the idea of a common ancestor of acetohydroxy acid synthase and pyruvate oxidase, a homologous ThDP- and FAD-dependent enzyme that, in contrast to AHASs, catalyzes a reaction that relies on intercofactor electron transfer.
Resumo:
Alpha-Tocopherol is found to interact with the stable free radical DPPH orders of magnitude faster than ordinary phenols. It is suggested that the high reactivity arises from the coplanarity of the C-O-C framework with the aromatic ring. The rate constant of the reaction of Alpha-tocopherol with DPPH increases progressively with solvent polarity and can be quantitatively related to Kosower's Z parameter. Fatty acid derivatives slow down the reaction with DPPH due to binding with Alpha-tocopherol.
Resumo:
The effect of solvent on chemical reactivity has generally been explained on the basis of the dielectric constant and viscosity. However a number of spectroscopic studies, including UV-VIS, IR and Raman, has led to numerous empirical parameters to define solvent effect based on either solvating ability or polarity scale. These parameters include solvent polarizability, dipolarity, Lewis acidity and Lewis basicity, E-T(30), pi*, alpha, beta etc. However, from a structural point of view, we can separate solvation as static and dynamic processes. The static solvation basically relates to stabilization of the molecular structure by the solvent to attain the equilibrium structure, both in the intermediate and ground state. Dynamic solvation relates to solvent reorganization-induced dynamics prior to the structural reorganization to reach the equilibrium state. In this paper, we present (a) structural distortions induced by the solvent due to preferential solvation of the triplet excited state, and (b) the importance of dynamic solvation induced by vibronic coupling (pseudo-Jahn-Teller coupling). The examples include the effect of solvent on structure and reactivity of excited states of 2,2,2-trifluoroacetophenone (TFA). Based on the comparison of time resolved resonance Raman (TR3) data of TFA and other substituted acetophenone systems, it was found that change in solvent polarity indeed results in electronic state switching and structural changes in the excited state, which explains the trend in reactivity. Further, a TR3 study of fluoranil (FA) in the triplet excited state in solvents of varying polarities indicates that the structure of FA in the triplet excited state is determined by vibronic coupling effects and thus distorted structure. These experimental results have been well supported by density functional theoretical computational studies.
Resumo:
By the reaction of Ru2Cl(O2CAr)4 (1) and PPh3 in MeCN-H2O the diruthenium(II,III) and diruthenium(II) compounds of the type Ru2(OH2)Cl(MeCN)(O2CAr)4(PPh3)2 (2) and Ru2(OH2)(MeCN)2(O2CAr)4(PPh3)2 (3) were prepared and characterized by analytical, spectral, and electrochemical data (Ar is an aryl group, C6H4-p-X; X = H, OMe, Me, Cl, NO2). The molecular structure of Ru2(OH2)Cl(MeCN)(O2CC6H4-p-OMe)4(PPh3)2 was determined by X-ray crystallography. Crystal data are as follows: triclinic, P1BAR, a = 13.538 (5) angstrom, b = 15.650 (4) angstrom, c = 18.287 (7) angstrom, alpha = 101.39 (3)-degrees, beta = 105.99 (4)-degrees, gamma = 97.94 (3)-degrees, V = 3574 angstrom 3, Z = 2. The molecule is asymmetric, and the two ruthenium centers are clearly distinguishable. The Ru(III)-Ru(II), Ru(III)-(mu-OH2), and Ru(II)-(mu-OH2) distances and the Ru-(mu-OH2)-Ru angle in [{Ru(III)Cl(eta-1-O2CC6H4-p-OMe)(PPh3)}(mu-OH2)(mu-O2CC6H4-p-OMe)2{Ru(II)(MeCN)(eta-1-O2CC6H4-p-OMe)(PPh3)}] are 3.604 (1), 2.127 (8), and 2.141 (10) angstrom and 115.2 (5)-degrees, respectively. The compounds are paramagnetic and exhibit axial EPR spectra in the polycrystalline form. An intervalence transfer (IT) transition is observed in the range 900-960 nm in chloroform in these class II type trapped mixed-valence species 2. Compound 2 displays metal-centered one-electron reduction and oxidation processes near -0.4 and +0.6 V (vs SCE), respectively in CH2Cl2-TBAP. Compound 2 is unstable in solution phase and disproportionates to (mu-aquo)diruthenium(II) and (mu-oxo)diruthenium(III) complexes. The mechanistic aspects of the core conversion are discussed. The molecular structure of a diruthenium(II) compound, Ru2(OH2)(MeCN)2(O2CC6H4-p-NO2)4(PPh3)2.1.5CH2Cl2, was obtained by X-ray crystallography. The compound crystallizes in the space group P2(1)/c with a = 23.472 (6) angstrom, b = 14.303 (3) angstrom, c = 23.256 (7) angstrom, beta = 101.69 (2)-degrees, V = 7645 angstrom 3, and Z = 4. The Ru(II)-Ru(II) and two Ru(II)-(mu-OH2) distances and the Ru(II)-(mu-OH2)-Ru(II) angle in [{(PPh3)-(MeCN)(eta-1-O2CC6H4-p-NO2)Ru}2(mu-OH2)(mu-O2CC6H4-p-NO2)2] are 3.712 (1), 2.173 (9), and 2.162 (9) angstrom and 117.8 (4)-degrees, respectively. In both diruthenium(II,III) and diruthenium(II) compounds, each metal center has three facial ligands of varying pi-acidity and the aquo bridges are strongly hydrogen bonded with the eta-1-carboxylato facial ligands. The diruthenium(II) compounds are diamagnetic and exhibit characteristic H-1 NMR spectra in CDCl3. These compounds display two metal-centered one-electron oxidations near +0.3 and +1.0 V (vs SCE) in CH2Cl2-TBAP. The overall reaction between 1 and PPh3 in MeCN-H2O through the intermediacy of 2 is of the disproportionation type. The significant role of facial as well as bridging ligands in stabilizing the core structures is observed from electrochemical studies.
Resumo:
This paper reports a study on the microstructure of two series of copolyperoxides of alpha-methylstyrene, with styrene and with methylmethacrylate. The copolyperoxides were synthesized by the free radical-initiated oxidative copolymerization of the vinyl monomer pairs. The copolyperoxide compositions obtained from the H-1 and C-13 NMR spectra led to the determination of the reactivity ratios. The product of the reactivity ratios indicates that alpha-methylstyrene forms a block copolyperoxide with styrene and a random copolyperoxide with methylmethacrylate. Microstructural parameters like average sequence length, run number, etc. have been determined for the latter copolyperoxide from analysis of its C-13 NMR spectrum. The aromatic quaternary and carbonyl carbons were found to be sensitive to triad sequences. The end groups of the copolyperoxides have been identified by H-1 NMR as well as FTIR spectroscopic techniques. The thermal degradation of the copolyperoxides has been studied by differential scanning calorimetry, which confirms the alternating peroxide units in the copolyperoxide chain.
Resumo:
A new ruthenium(II) complex of the type [Ru(O2CMe)(MeCN)2(PPh3)2](CiO4) (1) has been isolated from a reaction between Ru2Cl(O2CMe), and PPh3 in MeCN followed by the addition of NaClO4. The structure of 1 is determined by single crystal X-ray studies. The crystal belongs to the monoclinic space group C2/m with the following unit cell dimensions for the C42H39N2O6P2ClRu(M = 866.15): a = 23.295(1)angstrom, b = 23.080(1)angstrom, c = 9.159(1)angstrom, beta = 107.32(1)-degrees, V = 4701(1)angstrom3, Z = 4, D(c) = 1.224 gcm-3, lambda(Mo - K-alpha) = 0.7107 angstrom, mu(Mo - K-alpha) = 4.09 cm-1, T = 293K, R = 0.081 (R(w) = 0.094) for 2860 reflections with I greater-than-or-equal-to 3-sigma(I) and g = 0.015853. In the complex cation, the symmetry about the metal centre is essentially octahedral showing the presence of a chelating acetato, two cis-oriented MeCN and two trans-disposed PPh3 ligands. The mechanistic aspects of the core cleavage reaction are discussed.
Resumo:
The structural specificity of α-chymotrypsin for polypeptides and denatured proteins has been examined. The primary specificity of the enzyme for these natural substrates is shown to closely correspond to that observed for model substrates. A pattern of secondary specificity is proposed.
A series of N-acetylated peptide esters of varying length have been evaluated as substrates of α-chymotrypsin. The results are interpreted in terms of proposed specificity theories.
The α-chymotrypsin-catalyzed hydrolyses of a number of N-acetylated dipeptide methyl esters were studied. The results are interpreted in terms of the available specificity theories and are compared with results obtained in the study of polypeptide substrates. The importance of non-productive binding in determining the kinetic parameters of these substrates is discussed. A partial model of the locus of the active site which interacts with the R’1CONH- group of a substrate of the form R’1CONHCHR2COR’3 is proposed.
Finally, some reactive esters of N-acetylated amino acids have been evaluated as substrates of α-chymotrypsin. Their reactivity and stereo-chemical behavior are discussed in terms of the specificity theories available. The importance of a binding interaction between the carboxyl function of the substrate and the enzyme is suggested by the results obtained.
Resumo:
Anilido phosphinimino ancillary ligand H2L1 reacted with one equivalent of rare earth metal trialkyl [Ln{CH2Si(CH3)(3)}(3)(thf)(2)] (Ln = Y, Lu) to afford rare earth metal monoalkyl complexes [L(1)LnCH(2)Si(CH3)(3)(THF)] (1a: Ln = Y; 1b: Ln = Lu). In this process, deprotonation of H2L1 by one metal alkyl species was followed by intramolecular C-H activation of the phenyl group of the phosphine moiety to generate dianionic species L-1 with release of two equivalnts of tetramethylsilane. Ligand L-1 coordinates to Ln(3+) ions in a rare C,N,N tridentate mode. Complex 1a reacted readily with two equivalents of 2,6-diisopropylaniline to give the corresponding bis-amido complex [(HL1)LnY(NHC(6)H(3)iPr(2)-2,6)(2)] (2) selectively, that is, the C-H activation of the phenyl group is reversible. When 1a was exposed to moisture, the hydrolyzed dimeric complex [{(HL1)Y(OH)}(2)](OH)(2) (3) was isolated. Treatment of [Ln{CH2Si(CH3)(3)}(3)-(thf)(2)] with amino phosphine ligands HL2-R gave stable rare earth metal bisalkyl complexes [(L2-R)Ln{CH2Si(CH3)(3)}(2)(thf)] (4a: Ln=Y, R=Me; 4b: Ln=Lu, R=Me; 4c: Ln=Y, R=iPr; 4d: Ln=Y, R=iPr) in high yields. No proton abstraction from the ligand was observed. Amination of 4a and 4c with 2,6-diisopropylaniline afforded the bis-amido counterparts [(L2-R)Y(NHC(6)H(3)iPr(2)-2,6)(2)(thf)] (5a: R=Me; 5b: R=iPr).
Resumo:
The research described in this thesis involves the synthesis of α-diazo-β-oxo sulfoxides, and exploration of their reactivity. The first chapter includes an introduction to diazocarbonyl chemistry, specifically focusing on the synthesis of diazo compounds, and diazosulfoxide derivatives. The chemistry of sulfines, in particular the generation of α-oxo sulfines and their subsequent trapping as cycloadducts and dimerisation is discussed. The results of this research are discussed in the second and third chapters. The design, synthesis and reactivity of α-diazo-β-oxo sulfoxides is described in chapter 2 where diazo transfer adjacent to sulfoxides to form stable α-diazo-β-oxo sulfoxides has been achieved in cyclic systems. Decomposition of theses α-diazosulfoxides using rhodium carboxylate or carboxamide catalysts is also described. These processes proceed via a Wolff type rearrangement to form α-oxo sulfine intermediates, which were trapped as cycloadducts with dienes. In the absence of a diene trap, dimerisation of the sulfine intermediate was observed. Intramolecular C-H insertion reasctios of α-diazo-α-sulfonyl esters to form substituted sulfolane esters is described in chapter 3. The reactivity of these sulfolane esters is briefly explored. The fourth chapter contains the experimental details and the spectral and analytical data for all new compounds reported.
Resumo:
The primary objective of this thesis was the preparation of a series of pyridine-containing α-diazocarbonyl compounds and subsequent investigation of the reactivity of these compounds on exposure to transition metal catalysts. In particular, the reactivity of the pyridyl α-diazocarbonyls was compared to that of the analogous phenyl α-diazocarbonyl compounds to ascertain the impact of replacement of the phenyl ring with pyridine. The first chapter initially provides a brief introduction into α-diazocarbonyl chemistry, comprising a compendium of well-established and recently developed methods in the preparation of these compounds, as well as an outline of the reactivity of these versatile substrates. The substantive element of this introductory chapter comprises a detailed review focused on transition metal-catalysed transformations of heterocyclic α-diazocarbonyl compounds, highlighting the extraordinary diversity of reaction products which can be accessed. This review is undertaken to set the work of this thesis in context. The results of this research are discussed in the second and third chapters together with the associated experimental details, including spectroscopic and analytical data obtained in the synthesis of all compounds during this research. The second chapter describes the preparation of a range of novel pyridine-containing α-diazocarbonyl compounds via a number of synthetic strategies including both acylation and diazo transfer methodologies. In contrast to the phenyl analogues, the generation of the pyridine α-diazocarbonyl substrates was complicated by a number of factors including the inherent basicity of the pyridine ring, tautomerism and existence of rotamers. Rhodium- and copper-mediated transformations of the pyridine-containing α-diazocarbonyl compounds is discussed in detail displaying very different reactivity patterns to those seen with the phenyl analogues; oxidation to 2,3- diketones, 1,2-hydride shift to form enones and oxonium and sulfonium ylide formation/rearrangement are prominent in the pyridyl series, with no evidence of aromatic addition to the pyridine ring. The third chapter focuses on exploration of novel chiral rhodium(II) catalysts, developed in the Maguire team, in both intermolecular cyclopropanations and intramolecular C–H insertion reactions. In this chapter, the studies are focused on standard α-diazocarbonyl compounds without heteroaryl substituents. The most notable outcome was the achievement of high enantiopurities for intramolecular C–H insertions, which were competitive with, and even surpassed, established catalyst systems in some cases. This work has provided insight into solvent and temperature effects on yields as well as enantio- and diastereoselectivity, thereby providing guidance for future development and design of chiral rhodium carboxylate catalysts. While this is a preliminary study, the significance of the results lie in the fact that these are the first reactions to give substantial asymmetric induction with these novel rhodium carboxylates. While the majority of the α-diazocarbonyl compounds explored in this work were α-diazoketones, a number of α-diazoesters are also described. Details of chiral stationary phase HPLC analysis, single crystal analysis and 2D NMR experiments are included in the Appendix (Appendix III-V).
Resumo:
Knockout mice lacking the alpha-1b adrenergic receptor were tested in behavioral experiments. Reaction to novelty was first assessed in a simple test in which the time taken by the knockout mice and their littermate controls to enter a second compartment was compared. Then the mice were tested in an open field to which unknown objects were subsequently added. Special novelty was introduced by moving one of the familiar objects to another location in the open field. Spatial behavior and memory were further studied in a homing board test, and in the water maze. The alpha-1b knockout mice showed an enhanced reactivity to new situations. They were faster to enter the new environment, covered longer paths in the open field, and spent more time exploring the new objects. They reacted like controls to modification inducing spatial novelty. In the homing board test, both the knockout mice and the control mice seemed to use a combination of distant visual and proximal olfactory cues, showing place preference only if the two types of cues were redundant. In the water maze the alpha-1b knockout mice were unable to learn the task, which was confirmed in a probe trial without platform. They were perfectly able, however, to escape in a visible platform procedure. These results confirm previous findings showing that the noradrenergic pathway is important for the modulation of behaviors such as reaction to novelty and exploration, and suggest that this is mediated, at least partly, through the alpha-1b adrenergic receptors. The lack of alpha-1b adrenergic receptors in spatial orientation does not seem important in cue-rich tasks but may interfere with orientation in situations providing distant cues only.