901 resultados para Reactive Power Control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel power control strategy that decouples the active and reactive power for a synchronous generator connected to a power network. The proposed control paradigm considers the capacitance of the transmission line along with its resistance and reactance as-well. Moreover the proposed controller takes into account all cases of R-X relationships, thus allowing it to function in Virtual Power Plant (VPP) structures which operate at both medium voltage (MV) and low voltage (LV) levels. The independent control of active and reactive power is achieved through rotational transformations of the terminal voltages and currents at the synchronous generator's output. This paper details the control technique by first presenting the mathematical and electrical network analysis of the methodology and then successfully implementing the control using MATLAB-SIMULINK simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The control paradigms of the distributed generation (DG) sources in the smart grid are realised by either utilising virtual power plant (VPP) or by employing MicroGrid structures. Both VPP and MicroGrid are presented with the problem of control of power flow between their comprising DG sources. This study depicts this issue for VPP and proposes a novel and improved universal active and reactive power flow controllers for three-phase pulse width modulated voltage source inverters (PWM-VSI) operating in the VPP environment. The proposed controller takes into account all cases of R-X relationship, thus allowing it to function in systems operating at high, medium (MV) and low-voltage (LV) levels. Also proposed control scheme for the first time in an inverter control takes into account the capacitance of the transmission line which is an important factor to accurately represent medium length transmission lines. This allows the proposed control scheme to be applied in VPP structures, where DG sources can operate at MV LV levels over a short/medium length transmission line. The authors also conducted small signal stability analysis of the proposed controller and compared it against the small signal study of the existing controllers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive power has become a vital resource in modern electricity networks due to increased penetration of distributed generation. This paper examines the extended reactive power capability of DFIGs to improve network stability and capability to manage network voltage profile during transient faults and dynamic operating conditions. A coordinated reactive power controller is designed by considering the reactive power capabilities of the rotor-side converter (RSC) and the grid-side converter (GSC) of the DFIG in order to maximise the reactive power support from DFIGs. The study has illustrated that, a significant reactive power contribution can be obtained from partially loaded DFIG wind farms for stability enhancement by using the proposed capability curve based reactive power controller; hence DFIG wind farms can function as vital dynamic reactive power resources for power utilities without commissioning additional dynamic reactive power devices. Several network adaptive droop control schemes are also proposed for network voltage management and their performance has been investigated during variable wind conditions. Furthermore, the influence of reactive power capability on network adaptive droop control strategies has been investigated and it has also been shown that enhanced reactive power capability of DFIGs can substantially improve the voltage control performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An algorithm for optimal allocation of reactive power in AC/DC system using FACTs devices, with an objective of improving the voltage profile and also voltage stability of the system has been presented. The technique attempts to utilize fully the reactive power sources in the system to improve the voltage stability and profile as well as meeting the reactive power requirements at the AC-DC terminals to facilitate the smooth operation of DC links. The method involves successive solution of steady-state power flows and optimization of reactive power control variables with Unified Power Flow Controller (UPFC) using linear programming technique. The proposed method has been tested on a real life equivalent 96-bus AC and a two terminal DC system under normal and contingency conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The voltage stability control problem has become an important concern for utilities transmitting power over long distances. This paper presents an approach using fuzzy set theory for reactive power control with the purpose of improving the voltage stability of a power system. To minimize the voltage deviations from pre-desired values of all the load buses, using the sensitivities with respect to reactive power control variables form the basis of the proposed fuzzy logic control (FLC). Control variables considered are switchable VAR compensators, On Load Tap Changing (OLTC) transformers and generator excitations. Voltage deviations and controlling variables are translated into fuzzy set notations to formulate the relation between voltage deviations and controlling ability of controlling devices. The developed fuzzy system is tested on a few simulated practical Indian power systems and some IEEE standard test systems. The performance of the fuzzy system is compared with conventional optimization technique and results obtained are encouraging. Results obtained for a 24 - node equivalent EHV system of part of Indian southern grid and IEEE New England 39-bus system are presented for illustration purposes. The proposed Fuzzy-Expert technique is found suitable for on-line applications in energy control centre as the solution is obtained fast with significant speedups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the problem of curtailing the number of control actions using fuzzy expert approach for voltage/reactive power dispatch. It presents an approach using fuzzy set theory for reactive power control with the purpose of improving the voltage profile of a power system. To minimize the voltage deviations from pre-desired values of all the load buses, using the sensitivities with respect to reactive power control variables form the basis of the proposed Fuzzy Logic Control (FLC). Control variables considered are switchable VAR compensators, On Load Tap Changing (OLTC) transformers and generator excitations. Voltage deviations and controlling variables are translated into fuzzy set notations to formulate the relation between voltage deviations and controlling ability of controlling devices. The developed fuzzy system is tested on a few simulated practical Indian power systems and modified IEEE-30 bus system. The performance of the fuzzy system is compared with conventional optimization technique and results obtained are encouraging. Results obtained for a modified IEEE-30 bus test system and a 205-node equivalent EHV system a part of Indian southern grid are presented for illustration purposes. The proposed fuzzy-expert technique is found suitable for on-line applications in energy control centre as the solution is obtained fast with significant speedups with few number of controllers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the ability of the doubly fed induction generator (DFIG) to deliver multiple reactive power objectives during variable wind conditions. The reactive power requirement is decomposed based on various control objectives (e.g. power factor control, voltage control, loss minimisation, and flicker mitigation) defined around different time frames (i.e. seconds, minutes, and hourly), and the control reference is generated by aggregating the individual reactive power requirement for each control strategy. A novel coordinated controller is implemented for the rotor-side converter and the grid-side converter considering their capability curves and illustrating that it can effectively utilise the aggregated DFIG reactive power capability for system performance enhancement. The performance of the multi-objective strategy is examined for a range of wind and network conditions, and it is shown that for the majority of the scenarios, more than 92% of the main control objective can be achieved while introducing the integrated flicker control scheme with the main reactive power control scheme. Therefore, optimal control coordination across the different control strategies can maximise the availability of ancillary services from DFIG-based wind farms without additional dynamic reactive power devices being installed in power networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reactive power management in distribution network with large penetration of distributed energy resources is an important task in future power systems. The control of reactive power allows the inclusion of more distributed recourses and a more efficient operation of distributed network. Currently, the reactive power is only controlled in large power plants and in high and very high voltage substations. In this paper, several reactive power control strategies considering a smart grids paradigm are proposed. In this context, the management of distributed energy resources and of the distribution network by an aggregator, namely Virtual Power Player (VPP), is proposed and implemented in a MAS simulation tool. The proposed methods have been computationally implemented and tested using a 32-bus distribution network with intensive use of distributed resources, mainly the distributed generation based on renewable resources. Results concerning the evaluation of the reactive power management algorithms are also presented and compared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing penetration of photovoltaic (PV) as well as increasing peak load demand has resulted in poor voltage profile for some residential distribution networks. This paper proposes coordinated use of PV and Battery Energy Storage (BES) to address voltage rise and/or dip problems. The reactive capability of PV inverter combined with droop based BES system is evaluated for rural and urban scenarios (having different R/X ratios). Results show that reactive compensation from PV inverters alone is sufficient to maintain acceptable voltage profile in an urban scenario (low resistance feeder), whereas, coordinated PV and BES support is required for the rural scenario (high resistance feeder). Constant as well as variable droop based BES schemes are analyzed. The required BES sizing and associated cost to maintain the acceptable voltage profile under both schemes is presented. Uncertainties in PV generation and load are considered, with probabilistic estimation of PV generation and randomness in load modeled to characterize the effective utilization of BES. Actual PV generation data and distribution system network data is used to verify the efficacy of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The operation of thyristor-controlled static VAR compensators (SVCs) at various conduction angles can be used advantageously to meet the unablanced reactive power demands in a system. However, such operation introduces harmonic currents into the AC system. This paper presents an algorithm to evaluate an optimum combination of the phase-wise reactive power generations from SVC and balanced reactive power supply from the AC system, based on the defined performance indices, namely, the telephone influence factor (TIF), the total harmonic current factor (IT) and the distortion factor (D). Results of the studies conducted on a typical distribution system are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wind power, as an alternative to fossil fuels, is plentiful, renewable, widely distributed, clean, produces no greenhouse gas emissions during operation, and uses little land. In operation, the overall cost per unit of energy produced is similar to the cost for new coal and natural gas installations. However, the stochastic behaviour of wind speeds leads to significant disharmony between wind energy production and electricity demand. Wind generation suffers from an intermittent characteristics due to the own diurnal and seasonal patterns of the wind behaviour. Both reactive power and voltage control are important under varying operating conditions of wind farm. To optimize reactive power flow and to keep voltages in limit, an optimization method is proposed in this paper. The objective proposed is minimization of the voltage deviations of the load buses (Vdesired). The approach considers the reactive power limits of wind generators and co-ordinates the transformer taps. This algorithm has been tested under practically varying conditions simulated on a test system. The results are obtained on a system of 50-bus real life equivalent power network. The result shows the efficiency of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential of distributed reactive power control to improve the voltage profile of radial distribution feeders has been reported in literature by few authors. However, the multiple inverters injecting or absorbing reactive power across a distribution feeder may introduce control interactions and/or voltage instability. Such controller interactions can be alleviated if the inverters are allowed to operate on voltage droop. First, the paper demonstrates that a linear shallow droop line can maintain the steady state voltage profile close to reference, up to a certain level of loading. Then, impacts of the shallow droop line control on line losses and line power factors are examined. Finally, a piecewise linear droop line which can achieve reduced line losses and close to unity power factor at the feeder source is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Present day power systems are growing in size and complexity of operation with inter connections to neighboring systems, introduction of large generating units, EHV 400/765 kV AC transmission systems, HVDC systems and more sophisticated control devices such as FACTS. For planning and operational studies, it requires suitable modeling of all components in the power system, as the number of HVDC systems and FACTS devices of different type are incorporated in the system. This paper presents reactive power optimization with three objectives to minimize the sum of the squares of the voltage deviations (ve) of the load buses, minimization of sum of squares of voltage stability L-indices of load buses (¿L2), and also the system real power loss (Ploss) minimization. The proposed methods have been tested on typical sample system. Results for Indian 96-bus equivalent system including HVDC terminal and UPFC under normal and contingency conditions are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes new direct power control (DPC) strategies for three-phase DC/AC converters with improved dynamic response and steady-state performance. As with an electrical machine, source and converter flux which equal the integration of the respective source and converter voltage are used to define active and reactive power flow. Optimization of the look-up-table used in conventional DPC is outlined first, to improve the power control and reduce the current distortion. Then constant switching frequency DPC is developed where the required converter voltage vector within a fixed half switching period is calculated directly from the active and reactive power errors. Detailed angle compensation due to the finite sampling frequency and the use of integral controller to further improve the power control accuracy, are described. Both simulation and experimental results are used to compare conventional DPC and vector control, and to demonstrate the effectiveness and robustness of the proposed control strategies during active and reactive power steps, and line inductance variations.