961 resultados para Raw phosphoric acids and by-products
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper discusses the levels of degradation of some co- and byproducts of the food chain intended for feed uses. As the first part of a research project, 'Feeding Fats Safety', financed by the sixth Framework Programme-EC, a total of 123 samples were collected from 10 European countries, corresponding to fat co- and byproducts such as animal fats, fish oils, acid oils from refining, recycled cooking oils, and other. Several composition and degradation parameters (moisture, acid value, diacylglycerols and monoacylglycerols, peroxides, secondary oxidation products, polymers of triacylglycerols, fatty acid composition, tocopherols, and tocotrienols) were evaluated. These findings led to the conclusion that some fat by- and coproducts, such as fish oils, lecithins, and acid oils, show poor, nonstandardized quality and that production processes need to be greatly improved. Conclusions are also put forward about the applicability and utility of each analytical parameter for characterization and quality control.
Resumo:
The PhD research project was a striking example of the enhancement of milling by-product and alternative protein sources from house cricket (Acheta domesticus), conceived as sustainable and renewable sources, to produce innovative food products. During milling processing of wheat and rye, several by-products with high technological and functional potential, are produced. The use of selected microbial consortia, allowed to obtain a pre-fermented ingredient for use in the bakery. The pre-ferments obtained were characterized by a high technological, functional and nutritional value, also interesting from a nutraceutical point of view. Bakery products obtained by the addition of pre-fermented ingredients were characterized by a greater quantity of aromatic molecules and an increase in SCFA, antioxidant activity, total amino acids and total phenols resulting in positive effect on the functionality. Moreover, the industrial scaling-up of pre-ferment and innovative bakery goods production, developed in this research, underlined the technological applicability of pre-fermented ingredients on a large scale. Moreover, the identification of innovative protein sources, can address the request of new sustainable ingredients able to less impact on the environment and to satisfy the food global demand. To upscale the insect production and ensure food safety of insect-based products, biotechnological formulations based on Acheta domesticus powder were optimized. The use of Yarrowia lipolytica in the biotechnological transformation of cricket powder led to the achievement of a cricket-based food ingredient characterized by a reduced content of chitin and an increase of antimicrobial and health-promoting molecules. The innovative bakery products containing cricket-based hydrolysates from Y. lipolytica possessed specific sensory, qualitative and functional characteristics to the final product. Moreover, the combination of Y. lipolytica hydrolysis and baking showed promising results regarding a reduced allergenicity in cricket-based baked products. Thus, the hydrolysate of cricket powder may represent a versatile and promising ingredient in the production of innovative foods.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The addition of phosphoric acids and their (by)products became a common practice in areas like metal treatment, detergent production, water and effluent treatment, as well by food, beverage and pharmaceutical industries. The phosphoric acids exhibit different radionuclides activity concentration, being important to evaluate the implications for the human and animal health. The 238U concentration in almost all raw acid phosphoric are within the worldwide range and the mean exposure rate for the filtration cake is 10 nGy/h, which is mainly attributed to 40K. The results obtained for total and (bio)available uranium concentration in filtration cake indicate that only 40% is (bio)available for plants. The radionuclides present in phosphoric acid food grade and filtration cake do not raise their concentration in human food chain or soils to harmful levels, consequently, not offering hazard to the ecosystem and animal or human health.
Resumo:
The impact of pyretroids, their by-products and degradation products on humans and the environment is recognized as a serious problem. Despite several studies regarding esfenvalerate toxicity and its detection in water and sediments, there is still a lack of information about its degradation intermediates and by-products in water. In this work, an HPLC method was developed to follow up the degradation of esfenvalerate and to detect the intermediates and by-products formed during the chemical degradation process. The chemical degradation was performed using an esfenvalerate suspension and different concentrations of hydrogen peroxide, temperatures, and pH. The reaction was monitored for 24 hr, and during the kinetic experiments, samples were collected at several reaction times and analyzed by HPLC-UV-PAD. In the degradation process, eleven different compounds (intermediate and by-products) were detected, among them the metabolites 3-phenoxybenzoic acid and 3-phenoxybenzaldehyde. HPLC-UV-PAD proved to be a valuable analytical technique for the rapid and reliable separation and determination of esfenvalerate, its degradation intermediates, and by-products.
Resumo:
At head of title: Imperial mineral resources bureau.
Resumo:
This study was undertaken in the framework of a larger European project dealing with the characterization of fat co- and by-products from the food chain, available for feed uses. In this study, we compare the effects, on the fatty acid (FA) and tocol composition of chicken and rabbit tissues, of the addition to feeds of a palm fatty acid distillate, very low in trans fatty acids (TFA), and two levels of the corresponding hydrogenated by-product, containing intermediate and high levels of TFA. Thus, the experimental design included three treatments, formulated for each species, containing the three levels of TFA defined above. Obviously, due to the use of hydrogenated fats, the levels of saturated fatty acids (SFA) show clear differences between the three dietary treatments. The results show that diets high in TFA (76 g/kg fat) compared with those low in TFA (4.4 g/kg fat) led to a lower content of tocopherols and tocotrienols in tissues, although these differences were not always statistically significant, and show a different pattern for rabbit and chicken. The TFA content in meat, liver and plasma increased from low-to-high TFA feeds in both chicken and rabbit. However, the transfer ratios from feed were not proportional to the TFA levels in feeds, reflecting certain differences according to the animal species. Moreover, feeds containing fats higher in TFA induced significant changes in tissue SFA, monounsaturated fatty acids and polyunsaturated fatty acids composition, but different patterns can be described for chicken and rabbit and for each type of tissue.
Resumo:
This study was conducted to evaluate the inclusion of two levels (2.5 e 5.0%) of dried yeast (Saccharomyces cerevisiae) and its by-products, disrupted yeast cells and yeast cell wall in diets for juveniles of pacu (Piaractus mesopotamicus). Production performance, body and plasmatic composition indexes were evaluated. Seven isoproteic (26% digestible protein) and isoenergetic (3.100 kcal digestible energy) diets were formulated containing increased levels of each ingredient. The diets were supplied for 86 days, "ad libitum". Yeast and by-products increase feed efficiency and protein use, when compared to the control diet. Carcass composition and plasmatic (glucose, cortisol, uric acid, urea and plasmatic protein) levels are not affected by the test ingredient supplementation.
Resumo:
The aim of the first part of this thesis was to evaluate the effect of trans fatty acid- (TFA), contaminant, polycyclic aromatic hydrocarbon (PAH)- and oxidation productenriched diets on the content of TFA and conjugated linoleic acid (CLA) isomers in meat and liver of both poultry and rabbit. The enriched feedings were prepared with preselected fatty co-and by-products that contained low and high levels of TFA (low, palm fatty acid distillate; high, hydrogenated palm fatty acid distillate), environmental contaminants (dioxins and PCBs) (two different fish oils), PAH (olive oil acid oils and pomace olive oil from chemical refining, for low and high levels) and oxidation products (sunflower-olive oil blend before and after frying), so as to obtain single feedings with three enrichment degrees (high, medium and low) of the compound of interest. This experimental set-up is a part of a large, collaborative European project (http://www.ub.edu/feedfat/), where other chemical and health parameters are assessed. Lipids were extracted, methylated with diazomethane, then transmethylated with 2N KOH/methanol and analyzed by GC and silver-ion TLC-GC. TFA and CLA were determined in the fats, the feedings, meat and liver of both poultry and rabbit. In general, the level of TFA and CLA in meat and liver mainly varied according to those originally found in the feeding fats. It must be pointed out, though, that TFA and CLA accumulation was different for the two animal species, as well as for the two types of tissues. The TFA composition of meat and liver changes according to the composition of the oils added to the feeds with some differences between species. Chicken meat with skin shows higher TFA content (2.6–5.4 fold) than rabbit meat, except for the “PAH” trial. Chicken liver shows higher TFA content (1.2–2.1 fold) than rabbit liver, except for the “TRANS” and “PAH” trials. In both chicken and rabbit meats, the TFA content was higher for the “TRANS” trial, followed by the “DIOXIN” trial. Slight differences were found on the “OXIDATION” and “PAH” trends in both types of meats. In both chicken and rabbit livers, the TFA content was higher for the “TRANS” trial, followed by those of the “PAH”, “DIOXIN” and “OXIDATION” trials. This trend, however, was not identical to that of feeds, where the TFA content varied as follows: “TRANS” > “DIOXIN” >“PAH” > “OXIDATION”. In chicken and rabbit meat samples, C18:1 TFA were the most abundant, followed by C18:2 TFA and C18:3 TFA, except for the “DIOXIN” trial where C18:3 TFA > C18:2 TFA. In chicken and rabbit liver samples of the “TRANS” and “OXIDATION” trials, C18:1 TFA were the most abundant, followed by C18:2 TFA and C18:3 TFA, whereas C18:3 TFA > C18:2 in the “DIOXIN” trial. Slight differences were found on the “PAH” trend in livers from both species. The second part of the thesis dealt with the study of lipid oxidation in washed turkey muscle added with different antioxidants. The evaluation on the oxidative stability of muscle foods found that oxidation could be measured by headspace solid phase microestraction (SPME) of hexanal and propanal. To make this method effective, an antioxidant system was added to stored muscle to stop the oxidative processes. An increase in ionic strength of the sample was also implemented to increase the concentration of aldehydes in the headspace. This method was found to be more sensitive than the commonly used thiobarbituric acid reactive substances (TBARs) method. However, after antioxidants were added and oxidation was stopped, the concentration of aldehydes decreased. It was found that the decrease in aldehyde concentration was due to the binding of the aldehydes to muscle proteins, thus decreasing the volatility and making them less detectable.
Resumo:
Chicken is the most widely consumed meat all over the world due to chickens being easy to rear, their fast growth rate and the meat having good nutritional characteristics. The main objective of this paper was to study the effects of dietary fatty by-products in low, medium and high levels of oxidized lipids and trans fatty acids (TFAs) on the contents of cholesterol and oxycholesterols in meat, liver, and plasma of chickens. A palm fatty acid distillate, before and after hydrogenation, and a sunflower-olive oil blend (70/30, v/v) before and after use in a commercial frying process were used in feeding trials after adding 6% of the fats to the feeds. Highly oxidized lipid and TFA feeds significantly increased the contents of cholesterol and oxycholesterols in all tissues of chicken (0.01 < p <= 0.05). The contents of oxycholesterols in chicken meat, liver and plasma obtained from TFA feeding trials varied between 17 and 48 μg/100 g in meat, 19-42 μg/100 g in liver and 105-126 μg/dL in plasma. In contrast, in the oxidized lipid feeding trials, oxycholesterols varied between 13 and 75 μg/100 g in meat, 30-58 μg/100 g in liver and 66-209 μg/dL in plasma. Meat from chickens fed with feeds containing high levels of TFAs or oxidized lipids may contribute to higher ingestion of cholesterol and oxycholesterols by humans.
Resumo:
Apparent digestibility coefficients (ADC) of dry matter, crude protein (CP), and amino acids (AA) were evaluated in diets with six rendered by-products used to feed juvenile Pacific white shrimp: two poultry meals (poultry meal 1, 69% CP; poultry meal 2, 72% CP), two feather meals (89% CP), one blood meal (96% CP), and one pork meal (57% CP). Experimental diets were formulated with 30% of the test ingredient and 70% of a commercial diet supplemented with 1% of chromium oxide as inert marker. AA contents in ingredients, diets, leached diets, and feces were determined by high performance liquid chromatography. Preprandial AA losses attributed to leaching were higher in the blood meal diet (15%) and pork meal diet (10%). Poultry meal diets 1 and 2 showed mean AA losses of 3% and 5%, respectively, while the reference diet had a mean AA leaching of 6%. The AA that had the highest leaching rates were lysine (21%), methionine (15%), and histidine (12%). The ADC of dry matter was higher for poultry meals 1 (70%) and 2 (73%), followed by pork meal (69%), feather meals (61%), and blood meal (57%). The digestibility of CP was higher for poultry meals (78–80%), followed by pork meal (76%), and blood meal and feather meals (65–67%). The digestibility of CP in the reference diet (83%) was higher than that observed for all the animal by-product meals except the poultry meals. The ADC of the sum of AA adjusted for nutrient leaching fluctuated from 65% for blood meal to 80% for poultry meals.
Resumo:
The modified fatty acids, (Z,Z,Z)-(octadeca-6,9,12-trienyloxy)acetic acid, (Z,Z,Z)-(octadeca-9,12,15-trienyloxy)acetic acid, (all-Z)-(eicosa-5,8,11,14-tetraenyloxy)acetic acid, (all-Z)-(eicosa-5,8,11,14-tetraenylthio)acetic acid, 3-[(all-Z)-(eicosa-5,8,11,14-tetraenylthio)]propionic acid, (all-Z)-(eicosa-5,8,11,14-tetraenylthio)succinic acid, N-[(all-Z)-(eicosa-5,8,11,14-tetraenoyl)]glycine and N-[(all-Z)-(eicosa-5,8,11,14-tetraenoyl)]aspartic acid, all react with soybean 15-lipoxygenase. The products were treated with triphenylphosphine to give alcohols, which were isolated using HPLC. Analysis of the alcohols using negative ion tandem electrospray mass spectrometry, and by comparison with compounds obtained by autoxidation of arachidonic acid, shows that each enzyme catalysed oxidation occurs at the omega -6 position of the substrate. In a similar fashion, it has been found that (Z,Z,Z)-(octadeca-6,9,12-trienyloxy)acetic acid, (Z,Z,Z)-(octadeca-9,12,15-trienyloxy)acetic acid, (all-Z)-(eicosa-5,8,11,14-tetraenylthio)acetic acid and N-[(all-Z)-(eicosa-5,8, 11.14-tetraenylthio)]propionic acid each undergoes regioselective oxidation at the carboxyl end of the polyene moiety on treatment with potato 5-lipoxygenase. Neither (all-Z)-(eicosa-5,8,11,14-tetraenylthio)succinic acid nor N-[(all-Z)-(eicosa-5,8,11,14-tetraenoyl)]aspartic acid reacts in the presence of this enzyme, while N-[(all-Z)-(eicosa-5,8,11,14-tetraenoyl)]glycine affords the C11' oxidation product. The alcohol derived from (Z,Z,Z)-(octadeca-6,9, 12-trienyloxy)acetic acid using the 15-lipoxygenase reacts at the C6' position with the 5-lipoxygenase. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Synthesis gas, a mixture of CO, H2, and CO2, is a promising renewable feedstock for bio-based production of organic chemicals. Production of medium-chain fatty acids can be performed via chain elongation, utilizing acetate and ethanol as main substrates. Acetate and ethanol are main products of syngas fermentation by acetogens. Therefore, syngas can be indirectly used as a substrate for the chain elongation process.