987 resultados para Radio-sources
Resumo:
Based on maps of the extragalactic radio sources Cyg A, Her A, Cen A, 3C 277.3 and others, arguments are given that the twin-jets from the respective active galactic nucleus ram their channels repeatedly through thin, massive shells. The jets are thereby temporarily choked and blow radio bubbles. Warm shell matter in the cocoon shows up radio-dark through electron-scattering.
Resumo:
We present multifrequency Very Large Array (VLA) observations of two giant quasars, 0437-244 and 1025-229, from the Molonglo Complete Sample. These sources have well-defined FR II radio structure, possible one-sided jets, no significant depolarization between 1365 and 4935 MHz and low rotation measure (\ RM \ < 20 rad m(-2)). The giant sources are defined to be those with overall projected size greater than or equal to 1 Mpc. We have compiled a sample of about 50 known giant radio sources from the literature, and have compared some of their properties with a complete sample of 3CR radio sources of smaller sizes to investigate the evolution of giant sources, and test their consistency with the unified scheme for radio galaxies and quasars. We find an inverse correlation between the degree of core prominence and total radio luminosity, and show that the giant radio sources have similar core strengths to smaller sources of similar total luminosity. Hence their large sizes are unlikely to be caused by stronger nuclear activity. The degree of collinearity of the giant sources is also similar to that of the sample of smaller sources. The luminosity-size diagram shows that the giant sources are less luminous than our sample of smaller sized 3CR sources, consistent with evolutionary scenarios in which the giants have evolved from the smaller sources, losing energy as they expand to these large dimensions. For the smaller sources, radiative losses resulting from synchrotron radiation are more significant while for the giant sources the equipartition magnetic fields are smaller and inverse Compton lass owing to microwave background radiation is the dominant process. The radio properties of the giant radio galaxies and quasars are consistent with the unified scheme.
Resumo:
The spectral index-luminosity relationship for steep-spectrum cores in galaxies and quasars has been investigated, and it is found that the sample of galaxies supports earlier suggestions of a strong correlation, while there is weak evidence for a similar relationship for the quasars. It is shown that a strong spectral index-luminosity correlation can be used to set an upper limit to the velocities of the radio-emitting material which is expelled from the nucleus in the form of collimated beams or jets having relativistic bulk velocities. The data on cores in galaxies indicate that the Lorentz factors of the radiating material are less than about 2.
Resumo:
We present a study of the environments of extended radio sources in the Australia Telescope Low-Brightness Survey (ATLBS). The radio sources were selected from the ATLBS Extended Source Sample, which is a well defined sample containing the most extended of radio sources in the ATLBS sky survey regions. The environments were analysed using 4-m Cerro-Tololo Inter-American Observatory Blanco telescope observations carried out for ATLBS fields in the Sloan Digital Sky Survey r(') band. We have estimated the properties of the environments using smoothed density maps derived from galaxy catalogues constructed using these optical imaging data. The angular distribution of galaxy density relative to the axes of the radio sources has been quantified by defining anisotropy parameters that are estimated using a new method presented here. Examining the anisotropy parameters for a subsample of extended double radio sources that includes all sources with pronounced asymmetry in lobe extents, we find good evidence for environmental anisotropy being the dominant cause for lobe asymmetry in that higher galaxy density occurs almost always on the side of the shorter lobe, and this validates the usefulness of the method proposed and adopted here. The environmental anisotropy parameters have been used to examine and compare the environments of Fanaroff-Riley Class I (FRI) and Fanaroff-Riley Class II (FRII) radio sources in two redshift regimes (z < 0.5 and z > 0.5). Wide-angle tail sources and head-tail sources lie in the most overdense environments. The head-tail source environments (for the HT sources in our sample) display dipolar anisotropy in that higher galaxy density appears to lie in the direction of the tails. Excluding the head-tail and wide-angle tail sources, subsamples of FRI and FRII sources from the ATLBS appear to lie in similar moderately overdense environments, with no evidence for redshift evolution in the regimes studied herein.
Resumo:
Abstract. Interplanetary scintillation observations of 48 of the 55 Augusto et al. (1998) flat spectrum radio sources were carried out at 111 MHz using the interplanetary scintillation method on the Large Phased Array (LPA) in Russia. Due to the large size of the LPA beam (1◦ × 0.5◦) a careful inspection of all possible confusion sources was made using extant large radio surveys: 37 of the 48 sources are not confused. We were able to estimate the scintillating flux densities of 13 sources, getting upper limits for the remaining 35. Gathering more or improving extant VLBI data on these sources might significantly improve our results. This proof-of-concept project tells us that compact (<1 ) flat spectrum radio sources show strong enough scintillations at 111 MHz to establish/constrain their spectra (low-frequency end). Key words. galaxies: general – galaxies: active – galaxies: quasars: general
Resumo:
Sebbene studiati a fondo, i processi che hanno portato alla formazione ed alla evoluzione delle galassie così come sono osservate nell'Universo attuale non sono ancora del tutto compresi. La visione attuale della storia di formazione delle strutture prevede che il collasso gravitazionale, a partire dalle fluttuazioni di densità primordiali, porti all'innesco della formazione stellare; quindi che un qualche processo intervenga e la interrompa. Diversi studi vedono il principale responsabile di questa brusca interruzione della formazione stellare nei fenomeni di attività nucleare al centro delle galassie (Active Galactic Nuclei, AGN), capaci di fornire l'energia necessaria a impedire il collasso gravitazionale del gas e la formazione di nuove stelle. Uno dei segni della presenza di un tale fenomeno all'interno di una galassia e l'emissione radio dovuta ai fenomeni di accrescimento di gas su buco nero. In questo lavoro di tesi si è studiato l'ambiente delle radio sorgenti nel campo della survey VLA-COSMOS. Partendo da un campione di 1806 radio sorgenti e 1482993 galassie che non presentassero emissione radio, con redshift fotometrici e fotometria provenienti dalla survey COSMOS e dalla sua parte radio (VLA-COSMOS), si è stimata la ricchezza dell'ambiente attorno a ciascuna radio sorgente, contando il numero di galassie senza emissione radio presenti all'interno di un cilindro di raggio di base 1 Mpc e di altezza proporzionale all'errore sul redshift fotometrico di ciascuna radio sorgente, centrato su di essa. Al fine di stimare la significatività dei risultati si è creato un campione di controllo costituito da 1806 galassie che non presentassero emissione radio e si è stimato l'ambiente attorno a ciascuna di esse con lo stesso metodo usato per le radio sorgenti. I risultati mostrano che gli ammassi di galassie aventi al proprio centro una radio sorgente sono significativamente più ricchi di quelli con al proprio centro una galassia senza emissione radio. Tale differenza in ricchezza permane indipendentemente da selezioni basate sul redshift, la massa stellare e il tasso di formazione stellare specifica delle galassie del campione e mostra che gli ammassi di galassie con al proprio centro una radio sorgente dovuta a fenomeni di AGN sono significativamente più ricchi di ammassi con al proprio centro una galassia senza emissione radio. Questo effetto e più marcato per AGN di tipo FR I rispetto ad oggetti di tipo FR II, indicando una correlazione fra potenza dell'AGN e formazione delle strutture. Tali risultati gettano nuova luce sui meccanismi di formazione ed evoluzione delle galassie che prevedono una stretta correlazione tra fenomeni di AGN, formazione stellare ed interruzione della stessa.
Resumo:
High-dynamic range imaging and monitoring with very-long-baseline interferometry reveal a rich morphology of luminous flat-spectrum radio sources. One-sided core-jet structures abound, and superluminal motion is frequently measured. In a few cases, both distinct moving features and diffuse underlying jet emission can be detected. Superluminal motion seen in such sources is typically complex, on curved trajectories or ridge lines, and with variable component velocities, including stationary features. The curved trajectories seen can be modeled by helical motion within the underlying jet flow. The very-long-baseline interferometry properties of the superluminal features in the jet of 3C 345 and other similar sources can be explained by models invoking the emission from shocks, at least within the vicinity of the compact core. Inverse-Compton calculations, constrained by x-ray observations, yield realistic estimates for the physical conditions in the parsec-scale jet. There is evidence for a transition region in this source beyond which other factors (e.g., plasma interactions and nonsynchrotron radiation processes) may become prominent. Multifrequency and polarization imaging (especially at high frequencies) are emerging as critical tools in testing model predictions.
Resumo:
Observations of complete flux density limited samples of powerful extragalactic radio sources by very-long-baseline interferometry enable us to study the evolution of these objects over the range of linear scales from 1 parsec to 15 kiloparsees (1 parsec = 3.09 x 10(18) cm). The observations are consistent with the unifying hypothesis that compact symmetric objects evolve into compact steep-spectrum doubles, which in turn evolve into large-scale Fanaroff-Riley class II objects. It is suggested that this is the primary evolutionary track of powerful extragalactic radio sources. In this case there must be significant luminosity evolution in these objects, but little velocity evolution, as they expand from 1 parsec to several hundred kiloparsecs in overall size.
Resumo:
Caption title.
Resumo:
"March 2, 1949."
Resumo:
Recent X-ray observations have revealed that early-type galaxies (which usually produce extended double radio sources) generally have hot gaseous haloes extending up to approx102kpc1,2. Moreover, much of the cosmic X-ray background radiation is probably due to a hotter, but extremely tenuous, intergalactic medium (IGM)3. We have presented4–7 an analytical model for the propagation of relativistic beams from galactic nuclei, in which the beams' crossing of the pressure-matched interface between the IGM and the gaseous halo, plays an important role. The hotspots at the ends of the beams fade quickly when their advance becomes subsonic with respect to the IGM. This model has successfully predicted (for typical double radio sources) the observed8 current mean linear-size (approx2Dsime350 kpc)4,5, the observed8–11 decrease in linear-size with cosmological redshift4–6 and the slope of the linear-size versus radio luminosity10,12–14 relation6. We have also been able to predict the redshift-dependence of observed numbers and radio luminosities of giant radio galaxies7,15. Here, we extend this model to include the propagation of somewhat weaker beams. We show that the observed flattening of the local radio luminosity function (LRLF)16–20 for radio luminosity Papproximately 1024 W Hz-1 at 1 GHz can be explained without invoking ad hoc a corresponding break in the beam power function Phi(Lb), because the heads of the beams with Lb < 1025 W Hz-1 are decelerated to sonic velocity within the halo itself, which leads to a rapid decay of radio luminosity and a reduced contribution of these intrinsically weaker sources to the observed LRLF.
Resumo:
A study of radio intensity variations at seven frequencies in the range 0.3 to 90 GHz for compact extragalactic radio sources classified as BL Lacs and high- and low-optical polarization quasars (HPQs and LPQs) is presented. This include the results of flux-density monitoring of 33 compact sources for three years at 327 MHz with the Ooty Synthesis Radio Telescope. The degrees of 'short-term' (tau less than about 1 yr) variability for the three optical types are found to be indistinguishable at low frequencies (less than 1 GHz), pointing to an extrinsic origin for the low-frequency variability. At high frequencies, a distinct dependence on optical type is present, the variability increasing from LPQs, through HPQs to BL Lacs. This trend persists even when only sources with ultra-flat radio spectra (alpha greater than -0.2) are considered. Implications of this for the phenomenon of high-frequency variability and the proposed unification schemes for different optical types of active galactic nuclei are discussed.
Resumo:
A radio study of a carefully selected sample of 20 Seyfert galaxies that are matched in orientation-independent parameters, which are measures of intrinsic active galactic nucleus power and host galaxy properties, is presented to test the predictions of the unified scheme hypothesis. Our sample sources have core flux densities greater than 8 mJy at 5 GHz on arcsec scales due to the feasibility requirements. These simultaneous parsec-scale and kiloparsec-scale radio observations reveal (1) that Seyfert 1 and Seyfert 2 galaxies have an equal tendency to show compact radio structures on milliarcsecond scales, (2) the distributions of parsec-scale and kiloparsec-scale radio luminosities are similar for both Seyfert 1 and Seyfert 2 galaxies, (3) there is no evidence for relativistic beaming in Seyfert galaxies, (4) similar distributions of source spectral indices in spite of the fact that Seyferts show nuclear radio flux density variations, and (5) the distributions of the projected linear size for Seyfert 1 and Seyfert 2 galaxies are not significantly different as would be expected in the unified scheme. The latter could be mainly due to a relatively large spread in the intrinsic sizes. We also find that a starburst alone cannot power these radio sources. Finally, an analysis of the kiloparsec-scale radio properties of the CfA Seyfert galaxy sample shows results consistent with the predictions of the unified scheme.