962 resultados para R-MEDIATED PHAGOCYTOSIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In alveolar macrophages, leukotriene (IT) B(4) and cysteinyl LTs (LTC(4), LTD(4) and LTE(4)) both enhance Fc gamma receptor (Fc gamma R)-mediated phagocytosis. In the present study we investigated the role of specific PKC isoforms (PKC-alpha and -delta), the MAP kinases p38 and ERK 1/2, and PI3K in mediating the potentiation of Fc gamma R-mediated phagocytosis induced by addition of leukotrienes to the AMs. It was found that exogenously added LTB(4) and LTD(4) both enhanced PKC-delta and -alpha phosphorylation during Fc gamma R engagement. Studies with isoform-selective inhibitors indicated that exogenous LTB(4) effects were dependent on both PKC-alpha and -delta, while LTD(4) effects were exclusively due to PKC-delta activation. Although both exogenous LTB(4) and LTD(4) enhanced p38 and ERK 1/2 activation, LTB(4) required only ERK 1/2, while LTD(4) required only p38 activation. Activation by both LTs was dependent on PI3K activation. Effects of endogenous LTs on kinase activation were also investigated using selective LT receptor antagonists. Endogenous LTB(4) contributed to Fc gamma R-mediated activation of PKC-alpha, ERK 1/2 and PI3K, while endogenous cysLTs contributes to activation of PKC-delta, p38 and PI3K. Taken together, our data show that the capacities of LTB(4) and LTD(4) to enhance Fc gamma R-mediated phagocytosis reflect their differential activation of specific kinase programs. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyspecific IgG given intravenously at high doses (IVIG) is used for immunomodulatory therapy in autoimmune diseases such as idiopathic thrombocytopenic purpura and myasthenia gravis. It is assumed that the clinical effect is brought about in part by a modulation of mononuclear phagocyte function, in particular by an inhibition of Fc receptor (FcR) mediated phagocytosis. In the present study, the effect of IVIG on FcR-mediated phagocytosis by monocytes was analysed in vitro. Since monocytes exposed to minute amounts of surface-bound IgG displayed impaired phagocytosis of IgG-coated erythrocytes (EA), the effect of IVIG was studied with mononuclear cells suspended in teflon bags in medium containing 10% autologous serum and IVIG (2-10 mg/ml). Monocytes pre-exposed to IVIG and then washed, displayed impaired ingestion of EA when compared with control cells cultured in 10% autologous serum only. The decrease in phagocytosis was observed with sheep erythrocytes treated with either rabbit IgG or bovine IgG1 and with anti-D-treated human erythrocytes. This suggests that phagocytosis via both FcR type I (FcRI) and type II (FcRII) was decreased. The impairment of phagocytosis was dependent on the presence of intact IgG and was mediated by IVIG from nulliparous donors and from multigravidae to the same extent, suggesting that alloantibodies contained in IVIG have a minor role in modulating FcR-mediated phagocytosis by monocytes. A flow cytometric analysis using anti-FcRI, FcRII and FcRII monoclonal antibodies showed that IVIG treatment upregulated FcRI expression but did not significantly alter the expression of FcRII and FcRIII.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been well-documented that leukotrienes (LTs) are released in allergic lung inflammation and that they participate in the physiopathology of asthma. A role for LTs in innate immunity has recently emerged: Cys-LTs were shown to enhance Fc gamma R-mediated phagocytosis by alveolar macrophages (AMs). Thus, using a rat model of asthma, we evaluated Fc gamma R-mediated phagocytosis and killing of Klebsiella pneumoniae by AMs. The effect of treatment with a cys-LT antagonist (montelukast) on macrophage function was also investigated. Male Wistar rats were immunized twice with OVA/alumen intraperitoneally and challenged with OVA aerosol. After 24 h, the animals were killed, and the AMs were obtained by bronchoalveolar lavage. Macrophages were cultured with IgG-opsonized red blood cells (50: 1) or IgG-opsonized K. pneumoniae (30: 1), and phagocytosis or killing was evaluated. Leukotriene C(4) and nitric oxide were quantified by the EIA and Griess methods, respectively. The results showed that AMs from sensitized and challenged rats presented a markedly increased phagocytic capacity via Fc gamma R (10X compared to controls) and enhanced killing of K. pneumoniae (4X higher than controls). The increased phagocytosis was inhibited 15X and killing 3X by treatment of the rats with montelukast, as compared to the non-treated group. cys-LT addition increased phagocytosis in control AMs but had no effect on macrophages from allergic lungs. Montelukast reduced nitric oxide (39%) and LTC(4) (73%). These results suggest that LTs produced during allergic lung inflammation potentiate the capacity of AMs to phagocytose and kill K. pneumonia via Fc gamma R. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pattern recognition receptors for fungi include dectin-1 and mannose receptor, and these mediate phagocytosis, as well as production of cytokines, reactive oxygen species, and the lipid mediator leukotriene B-4 (LTB4). The influence of G protein-coupled receptor ligands such as LTB4 on fungal pattern recognition receptor expression is unknown. In this study, we investigated the role of LTB4 signaling in dectin-1 expression and responsiveness in macrophages. Genetic and pharmacologic approaches showed that LTB4 production and signaling through its high-affinity G protein-coupled receptor leukotriene B4 receptor 1 (BLT1) direct dectin-1-dependent binding, ingestion, and cytokine production both in vitro and in vivo. Impaired responses to fungal glucans correlated with lower dectin-1 expression in macrophages from leukotriene (LT)- and BLT1-deficent mice than their wildtype counterparts. LTB4 increased the expression of the transcription factor responsible for dectin-1 expression, PU.1, and PU.1 small interfering RNA abolished LTB4-enhanced dectin-1 expression. GM-CSF controls PU.1 expression, and this cytokine was decreased in LT-deficient macrophages. Addition of GM-CSF to LT-deficient cells restored expression of dectin-1 and PU.1, as well as dectin-1 responsiveness. In addition, LTB4 effects on dectin-1, PU.1, and cytokine production were blunted in GM-CSF-/- macrophages. Our results identify LTB4-BLT1 signaling as an unrecognized controller of dectin-1 transcription via GM-CSF and PU.1 that is required for fungi-protective host responses. The Journal of Immunology, 2012, 189: 906-915.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetic individuals are more susceptible to infections and this seems to be related to impaired phagocyte function. Alveolar macrophages (AMs) are the first barrier to prevent respiratory infections Leukotrienes (LTs) increase AM phagocytic activity via Fc gamma R. In this study, we compared AMs from diabetic and nondiabetic rats for phagocytosis via Fc gamma R and the roles of LTs and insulin Diabetes was induced in male Wistar rats by alloxan (42 mg/kg, i.v); macrophages were obtained by bronchoalveolar lavage and IgG-opsonised sheep red blood cells (IgG-SRBC) were used as targets. LTs were added to the AMs 5 min before the addition of IgG-SRBC. AMs were treated with a LT synthesis inhibitor (zileuton, 10 mu M), or antagonists of the LTB(4) receptor (CP105 696, 10 mu M) cys-LT receptor (MK571, 10 mu M), 30 or 20 min before the addition of IgG-SRBC, respectively. We found that the phagocytosis of IgG-SRBC by AMs from diabetic rats is impaired compared with non-diabetic rats. Treatment with the LT inhibitor/antagonists significantly reduced AM phagocytosis in non-diabetic but not diabetic rats. During the phagocytosis of IgG-SRBC LTB(4) and LTC(4) were produced by AMs from both groups. The addition of exogenous LTB(4) or LTD(4) potentiated phagocytosis similarly in both groups Phagocytosis was followed by the phosphorylation of PKC-delta. ERK and Akt This was reduced by zileuton treatment in AMs from non-diabetic but not diabetic rats The addition of insulin to AMs further increased the phagocytosis by increasing PKC-delta phosphorylation These results suggest that the impaired phagocytosis found in AMs from diabetic rats is related to a deficient coupling of LTs to the Fc gamma R signaling cascade and that insulin has a key role in this coupling An essential role for insulin in Innate immunity is suggested (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PDI, a redox chaperone, is involved in host cell uptake of bacteria/viruses, phagosome formation, and vascular NADPH oxidase regulation. PDI involvement in phagocyte infection by parasites has been poorly explored. Here, we investigated the role of PDI in in vitro infection of J774 macrophages by amastigote and promastigote forms of the protozoan Leishmania chagasi and assessed whether PDI associates with the macrophage NADPH oxidase complex. Promastigote but not amastigote phagocytosis was inhibited significantly by macrophage incubation with thiol/PDI inhibitors DTNB, bacitracin, phenylarsine oxide, and neutralizing PDI antibody in a parasite redox-dependent way. Binding assays indicate that PDI preferentially mediates parasite internalization. Bref-A, an ER-Golgi-disrupting agent, prevented PDI concentration in an enriched macrophage membrane fraction and promoted a significant decrease in infection. Promastigote phagocytosis was increased further by macrophage overexpression of wild-type PDI and decreased upon transfection with an antisense PDI plasmid or PDI siRNA. At later stages of infection, PDI physically interacted with L. chagasi, as revealed by immunoprecipitation data. Promastigote uptake was inhibited consistently by macrophage preincubation with catalase. Additionally, loss-or gain-of-function experiments indicated that PMA-driven NADPH oxidase activation correlated directly with PDI expression levels. Close association between PDI and the p22phox NADPH oxidase subunit was shown by confocal colocalization and coimmunoprecipitation. These results provide evidence that PDI not only associates with phagocyte NADPH oxidase but also that PDI is crucial for efficient macrophage infection by L. chagasi. J. Leukoc. Biol. 86: 989-998; 2009.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Phagocytosis of apoptotic cells by macrophages induces a suppressor phenotype. Previous data from our group suggested that this occurs via Platelet-activating factor receptor (PAF-R)-mediated pathways. In the present study, we investigated the impact of apoptotic cell inoculation or induction by a chemotherapeutic agent (dacarbazine, DTIC) on tumour growth, microenvironmental parameters and survival, and the effect of treatment with a PAF-R antagonist (WEB2170). These studies were performed in murine tumours: Ehrlich Ascitis Tumour (EAT) and B16F10 melanoma. Methods Tumour growth was assessed by direct counting of EAT cells in the ascitis or by measuring the volume of the solid tumour. Parameters of the tumour microenvironment, such as the frequency of cells expressing cyclo-oxygenase-2 (COX-2), caspase-3 and galectin-3, and microvascular density, were determined by immunohistochemistry. Levels of vascular endothelium growth factor (VEGF) and prostaglandin E2 (PGE2) were determined by ELISA, and levels of nitric oxide (NO) by Griess reaction. PAF-R expression was analysed by immunohistochemistry and flow cytometry. Results Inoculation of apoptotic cells before EAT implantation stimulated tumour growth. This effect was reversed by in vivo pre-treatment with WEB2170. This treatment also reduced tumour growth and modified the microenvironment by reducing PGE2, VEGF and NO production. In B16F10 melanoma, WEB2170 alone or in association with DTIC significantly reduced tumour volume. Survival of the tumour-bearing mice was not affected by WEB2170 treatment but was significantly improved by the combination of DTIC with WEB2170. Tumour microenvironment elements were among the targets of the combination therapy since the relative frequency of COX-2 and galectin-3 positive cells and the microvascular density within the tumour mass were significantly reduced by treatment with WEB2170 or DTIC alone or in combination. Antibodies to PAF-R stained the cells from inside the tumour, but not the tumour cells grown in vitro. At the tissue level, a few cells (probably macrophages) stained positively with antibodies to PAF-R. Conclusions We suggest that PAF-R-dependent pathways are activated during experimental tumour growth, modifying the microenvironment and the phenotype of the tumour macrophages in such a way as to favour tumour growth. Combination therapy with a PAF-R antagonist and a chemotherapeutic drug may represent a new and promising strategy for the treatment of some tumours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a role for diacylglycerol in the activation of Ras and Rap1 at the phagosomal membrane. During phagocytosis, Ras density was similar on the surface and invaginating areas of the membrane, but activation was detectable only in the latter and in sealed phagosomes. Ras activation was associated with the recruitment of RasGRP3, a diacylglycerol-dependent Ras/Rap1 exchange factor. Recruitment to phagosomes of RasGRP3, which contains a C1 domain, parallels and appears to be due to the formation of diacylglycerol. Accordingly, Ras and Rap1 activation was precluded by antagonists of phospholipase C and of diacylglycerol binding. Ras is dispensable for phagocytosis but controls activation of extracellular signal-regulated kinase, which is partially impeded by diacylglycerol inhibitors. By contrast, cross-activation of complement receptors by stimulation of Fcgamma receptors requires Rap1 and involves diacylglycerol. We suggest a role for diacylglycerol-dependent exchange factors in the activation of Ras and Rap1, which govern distinct processes induced by Fcgamma receptor-mediated phagocytosis to enhance the innate immune response.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Urethral epithelial cells are invaded by Neisseria gonorrhoeae during gonococcal infection in men. To understand further the mechanisms of gonococcal entry into host cells, we used the primary human urethral epithelial cells (PHUECs) tissue culture system recently developed by our laboratory. These studies showed that human asialoglycoprotein receptor (ASGP-R) and the terminal lactosamine of lacto-N-neotetraose-expressing gonococcal lipooligosaccharide (LOS) play an important role in invasion of PHUECs. Microscopy studies showed that ASGP-R traffics to the cell surface after gonococcal challenge. Co-localization of ASGP-R with gonococci was observed. As ASGP-R-mediated endocytosis is clathrin dependent, clathrin localization in PHUECs was examined after infection. Infected PHUECs showed increased clathrin recruitment and co-localization of clathrin and gonococci. Preincubating PHUECs in 0.3 M sucrose or monodansylcadaverine (MDC), which both inhibit clathrin-coated pit formation, resulted in decreased invasion. N. gonorrhoeae strain 1291 produces a single LOS glycoform that terminates with Gal(beta1-4)Glc-Nac(beta1-3)Gal(beta1-4)Glc (lacto-N-neotetraose). Invasion assays showed that strain 1291 invades significantly more than four isogenic mutants expressing truncated LOS. Sialylation of strain 1291 LOS inhibited invasion significantly. Preincubation of PHUECs in asialofetuin (ASF), an ASGP-R ligand, significantly reduced invasion. A dose-response reduction in invasion was observed in PHUECs preincubated with increasing concentrations of NaOH-deacylated 1291 LOS. These studies indicated that an interaction between lacto-N-neotetraose-terminal LOS and ASGP-R allows gonococcal entry into PHUECs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Candida albicans is the most common opportunistic fungal pathogen and causes local and systemic disease in immunocompromised patients. Alveolar macrophages (AMs) are pivotal for the clearance of C. albicans from the lung. Activated AMs secrete 5-lipoxygenase-derived leukotrienes (LTs), which in turn enhance phagocytosis and microbicidal activity against a diverse array of pathogens. Our aim was to investigate the role of LTB(4) and LTD(4) in AM antimicrobial functions against C. albicans and the signaling pathways involved. Pharmacologic and genetic inhibition of LT biosynthesis as well as receptor antagonism reduced phagocytosis of C. albicans when compared with untreated or WT controls. Conversely, exogenous LTs of both classes augmented base-line C. albicans phagocytosis by AMs. Although LTB(4) enhanced mainly mannose receptor-dependent fungal ingestion, LTD(4) enhanced mainly dectin-1 receptor-mediated phagocytosis. LT enhancement of yeast ingestion was dependent on protein kinase C-delta (PKC delta) and PI3K but not PKC alpha and MAPK activation. Both LTs reduced activation of cofilin-1, whereas they enhanced total cellular F-actin; however, LTB(4) accomplished this through the activation of LIM kinases (LIMKs) 1 and 2, whereas LTD(4) did so exclusively via LIMK-2. Finally, both exogenous LTB(4) and LTD(4) enhanced AM fungicidal activity in an NADPH oxidase-dependent manner. Our data identify LTB(4) and LTD(4) as key mediators of innate immunity against C. albicans, which act by both distinct and conserved signaling mechanisms to enhance multiple antimicrobial functions of AMs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aims of this study were to evaluate the effects of PhotogemA (R)-mediated photosensitization on rat palatal mucosa and the biodistribution of the photosensitizer in this tissue. A solution of PhotogemA (R) (500 or 1000 mg/l) was applied to the palatal mucosa for 30 min and the exposure time to blue LED (460 nm) was 20 min (144 J/cm(2)). At 0, 1, 3, and 7 days, palatal mucosa was photographed for macroscopic analysis. After killing, the palate was removed for microscopic analysis. Thermal mapping evaluated temperature change in the tissue during irradiation. All experimental groups revealed intact mucosa in the macroscopic analysis. Tissue alterations were observed microscopically for only four out of 80 animals subjected to PDT. Fluorescence emitted by PhotogemA (R) was identified and was limited to the epithelial layer. A temperature increase from 35 to 41A degrees C was recorded. PhotogemA (R)- mediated PDT was not toxic to the rat palatal mucosa.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND Asialoglycoprotein receptor-1 (ASGR1) mediates capture and phagocytosis of platelets in pig-to-primate liver xenotransplantation. However, thrombocytopenia is also observed in xenotransplantation or xenoperfusion of other porcine organs than liver. We therefore assessed ASGR1 expression as well as ASGR1-mediated xenogeneic platelet phagocytosis in vitro and ex vivo on porcine aortic, femoral arterial, and liver sinusoidal endothelial cells (PAEC/PFAEC/PLSEC). METHODS Porcine forelimbs were perfused with whole, heparinized human or autologous pig blood. Platelets were counted at regular intervals. Pig limb muscle and liver, as well as PAEC/PFAEC/PLSEC, were characterized for ASGR1 expression. In vitro, PAEC cultured on microcarrier beads and incubated with non-anticoagulated human blood were used to study binding of human platelets and platelet-white blood cell aggregation. Carboxyfluorescein diacetate succinimidyl ester-labeled human platelets were exposed to PAEC/PFAEC/PLSEC and analyzed for ASGR1-mediated phagocytosis. RESULTS Human platelet numbers decreased from 102 ± 33 at beginning to 13 ± 6 × 10/μL (P < 0.0001) after 10 minutes of perfusion, whereas no significant decrease of platelets was seen during autologous perfusions (171 ± 26 to 122 ± 95 × 10/μL). The PAEC, PFAEC, and PLSEC all showed similar ASGR1 expression. In vitro, no correlation was found between reduction in platelet count and platelet-white blood cell aggregation. Phagocytosis of human carboxyfluorescein diacetate succinimidyl ester-labeled platelets by PAEC/PFAEC/PLSEC peaked at 15 minutes and was inhibited (P < 0.05 to P < 0.0001) by rabbit anti-ASGR1 antibody and asialofetuin. CONCLUSIONS The ASGR1 expressed on aortic and limb arterial pig vascular endothelium plays a role in binding and phagocytosis of human platelets. Therefore, ASGR1 may represent a novel therapeutic target to overcome thrombocytopenia associated with vascularized pig-to-primate xenotransplantation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

B-lymphocyte stimulator (BLyS also called BAFF), is a potent cell survival factor expressed in many hematopoietic cells. BLyS levels are elevated in the serum of non-Hodgkin lymphoma (NHL) patients, and have been reported to be associated with disease progression, and prognosis. To understand the mechanisms involved in BLyS gene expression and regulation, we examined expression, function, and regulation of the BLyS gene in B cell non-Hodgkin's lymphoma (NHL-B) cells. BLyS is constitutively expressed in aggressive NHL-B cells including large B cell lymphoma (LBCL) and mantle cell lymphoma (MCL) contributing to survival and proliferation of malignant B cells. Two important transcription factors, NF-κB and NFAT, were found to be involved in regulating BLyS expression through at least one NF-κB and two NFAT binding sites in the BLyS promoter. Further study indicates that the constitutive activation of NF-κB and BLyS in NHL-B cells forms a positive feedback loop contributing to cell survival and proliferation. In order to further investigate BLyS signaling pathway, we studied the function of BAFF-R, a major BLyS receptor, on B cells survival and proliferation. Initial study revealed that BAFF-R was also found in the nucleus, in addition to its presence on plasma membrane of B cells. Nuclear presentation of BAFF-R can be increased by anti-IgM and soluble BLyS treatment in normal peripheral B lymphocytes. Inhibition of BLyS expression decreases nuclear BAFF-R level in LBCL cells. Furthermore, we showed that BAFF-R translocated to nucleus through the classic karyopherin pathway. A candidate nuclear localization sequence (NLS) was identified in the BAFF-R protein sequence and mutation of this putative NLS can block BAFF-R entering nucleus and LBCL cell proliferation. Further study showed that BAFF-R co-localized with NF-κB family member, c-rel in the nucleus. We also found BAFF-R mediated transcriptional activity, which could be increased by c-rel. We also found that nuclear BAFF-R could bind to the NF-κB binding site on the promoters of NF-κB target genes such as BLyS, CD154, Bcl-xL, Bfl-1/A1 and IL-8. These findings indicate that BAFF-R may also promote survival and proliferation of normal B cells and NHL-B cells by directly functioning as a transcriptional co-factor with NF-κB family member. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The SLP-76 (Src homology 2 domain-containing leukocyte protein of 76 kDa) adapter protein is expressed in T cells and myeloid cells, whereas its homologue BLNK (B cell linker protein) is expressed in B cells. SLP-76 and BLNK link immunoreceptor tyrosine-based activation motif-containing receptors to signaling molecules that include phospholipase C-γ, mitogen-activated protein kinases, and the GTPases Ras and Rho. SLP-76 plays a critical role in T cell receptor, FcɛRI and gpVI collagen receptor signaling, and participates in signaling via FcγR and killer cell inhibitory receptors. BLNK plays a critical role in B cell receptor signaling. We show that murine bone marrow-derived macrophages express both SLP-76 and BLNK. Selective ligation of FcγRI and FcγRII/III resulted in tyrosine phosphorylation of both SLP-76 and BLNK. SLP-76−/− bone marrow-derived macrophages display FcγR-mediated tyrosine phosphorylation of Syk, phospholipase C-γ2, and extracellular signal regulated kinases 1 and 2, and normal FcγR-dependent phagocytosis. These data suggest that both SLP-76 and BLNK are coupled to FcγR signaling in murine macrophages.