992 resultados para QED RADIATIVE-CORRECTIONS
Resumo:
We evaluate the vacuum polarization tensor for three-dimensional quantum electrodynamics (QED3) via Heisenberg equations of motion in order to clarify the problem arising from the use of different regularization prescriptions in the interaction picture. We conclude that the photon does acquire physical mass of topological origin when such contribution is taken into account for the photon propagator.
Resumo:
We compute the one-loop oblique corrections in a typical model with neutrino masses due to the seesaw mechanism. We verify that a Dirac neutrino mass up to 178 GeV is still allowed by the experimental data.
Resumo:
We evaluate the one-loop fermion self-energy for the gauged Thirring model in (2+1) dimensions. with one massive fermion flavor. We do this in the framework of the causal perturbation theory. In contrast to QED3, the corresponding two-point function turns out to be infrared finite on the mass shell. Then, by means of a Ward identity, we derive the on-shell vertex correction and discuss the role played by causality for non-renormalizable theories.
Resumo:
The rates for lepton number washout in extensions of the Standard Model containing right-handed neutrinos are key ingredients in scenarios for baryogenesis through leptogenesis. We relate these rates to real-time correlation functions at finite temperature, without making use of any particle approximations. The relations are valid to quadratic order in neutrino Yukawa couplings and to all orders in Standard Model couplings. They take into account all spectator processes, and apply both in the symmetric and in the Higgs phase of the electroweak theory. We use the relations to compute washout rates at next-to-leading order in g, where g denotes a Standard Model gauge or Yukawa coupling, both in the non-relativistic and in the relativistic regime. Even in the non-relativistic regime the parametrically dominant radiative corrections are only suppressed by a single power of g. In the non-relativistic regime radiative corrections increase the washout rate by a few percent at high temperatures, but they are of order unity around the weak scale and in the relativistic regime.
Resumo:
The origin of divergent logarithmic contributions to gauge theory cross sections arising from soft and collinear radiation is explored and a general prescription for tackling next-to-soft logarithms is presented. The NNLO Abelian-like contributions to the Drell-Yan K-factor are reproduced using this generalised prescription. The soft limit of gravity is explored where the interplay between the eikonal phase and Reggeization of the graviton is explained using Wilson line techniques. The Wilson line technique is then implemented to treat the set of next-to-soft contributions arising from dressing external partons with a next-to-soft Wilson line.
Resumo:
The ALICE experiment at the LHC has studied J/psi production at mid-rapidity in pp collisions at root s = 7 TeV through its electron pair decay on a data sample corresponding to an integrated luminosity L-int = 5.6 nb(-1). The fraction of J/psi from the decay of long-lived beauty hadrons was determined for J/psi candidates with transverse momentum p(t) > 1,3 GeV/c and rapidity vertical bar y vertical bar < 0.9. The cross section for prompt J/psi mesons, i.e. directly produced J/psi and prompt decays of heavier charmonium states such as the psi(2S) and chi(c) resonances, is sigma(prompt J/psi) (p(t) > 1.3 GeV/c, vertical bar y vertical bar < 0.9) = 8.3 +/- 0.8(stat.) +/- 1.1 (syst.)(-1.4)(+1.5) (syst. pol.) mu b. The cross section for the production of b-hadrons decaying to J/psi with p(t) > 1.3 GeV/c and vertical bar y vertical bar < 0.9 is a sigma(J/psi <- hB) (p(t) > 1.3 GeV/c, vertical bar y vertical bar < 0.9) = 1.46 +/- 0.38 (stat.)(-0.32)(+0.26) (syst.) mu b. The results are compared to QCD model predictions. The shape of the p(t) and y distributions of b-quarks predicted by perturbative QCD model calculations are used to extrapolate the measured cross section to derive the b (b) over bar pair total cross section and d sigma/dy at mid-rapidity.
Resumo:
In this paper we review the different relativistic and QED contributions to energies, ionic radii, transition probabilities and Landé g-factors in super-heavy elements, with the help of the MultiConfiguration Dirac-Fock method (MCDF). The effects of taking into account the Breit interaction to all orders by including it in the self-consistent field process are demonstrated. State of the art radiative corrections are included in the calculation and discussed. We also study the non-relativistic limit of MCDF calculation and find that the non-relativistic offset can be unexpectedly large.
Resumo:
In this work we rederive the Lamb-Retherford energy shift for an atomic electron in the presence of a thermal radiation. Using the Dalibard, Dupont-Roc and Cohen-Tannoudji (DDC) formalism, where physical observables are expressed as convolutions of suitable statistical functions, we construct the electromagnetic field propagator of thermo field dynamics in the Coulomb gauge in order to investigate finite temperature effects on the atomic energy levels. In the same context, we also analyze the problem of the ground state stability.
Resumo:
Using the expression of the dynamical gluon mass obtained through the operator product expansion we discuss the relevance of gluon mass effects in the decays V --> hadrons (V = J/psi, Y), Relativistic and radiative corrections are also introduced to calculate alpha(s)(m(c)) and alpha(s)(m(b)) comparing them with other values available in the literature. The effects of dynamical gluon masses are negligible for Y decay but important for J/psi decay. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
We consider the (2+1)-dimensional gauged Thirring model in the Heisenberg picture. In this context we evaluate the vacuum polarization tensor as well as the corrected gauge boson propagator and address the issues of generation of mass and dynamics for the gauge boson (in the limits of QED 3 and Thirring model as a gauge theory, respectively) due to the radiative corrections.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work is a review of the Negative Dimension Integration Method as a powerful tool for the computation of the radiative corrections present in Quantum Field Perturbation Theory. This method is applicable in the context of Dimensional Regularization and it provides exact solutions for Feynman integrals with both dimensional parameter and propagator exponents generalized. These solutions are presentedintheformoflinearcombinationsofhypergeometricfunctionswhosedomains of convergence are related to the analytic structure of the Feynman Integral. Each solution is connected to the others trough analytic continuations. Besides presenting and discussing the general algorithm of the method in a detailed way, we offer concrete applications to scalar one-loop and two-loop integrals as well as to the one-loop renormalizationofQuantumElectrodynamics (QED)
Resumo:
We present the differential rates and branching ratios of the radiative decays τ→lννγ, with l = e or μ, and μ→eννγ in the Standard Model at next-to-leading order. Radiative corrections are computed taking into account the full depencence on the mass m l of the final charged leptons, which is necessary for the correct determination of the branching ratios. Only partial agreement is found with previous calculations performed in the m l → 0 limit. Our results agree with the measurements of the branching ratios B(μ→eννγ) and B(τ→μννγ) for a minimum photon energy of 10 MeV in the μ and τ rest frames, respectively. Babar’s recent precise measurement of the branching ratio B(τ→eννγ), for the same photon energy threshold, differs from our prediction by 3.5 standard deviations.
Resumo:
Using the published KTeV samples of K(L) -> pi(+/-)e(-/+)nu and K(L) -> pi(+/-)mu(-/+)nu decays, we perform a reanalysis of the scalar and vector form factors based on the dispersive parametrization. We obtain phase-space integrals I(K)(e) = 0.15446 +/- 0.00025 and I(K)(mu) = 0.10219 +/- 0.00025. For the scalar form factor parametrization, the only free parameter is the normalized form factor value at the Callan-Treiman point (C); our best-fit results in InC = 0.1915 +/- 0.0122. We also study the sensitivity of C to different parametrizations of the vector form factor. The results for the phase-space integrals and C are then used to make tests of the standard model. Finally, we compare our results with lattice QCD calculations of F(K)/F(pi) and f(+)(0).