966 resultados para Q-switched lasers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-mode rate equations have been developed to investigate mode competition in high-power acousto-optically Q-switched planar waveguide lasers. The mode competition arises from coupling effects and temporal losses in the transform between guided modes and free-space propagation. Pulse-to-pulse instability and temporal beam distortions are enlarged by mode competition when the laser works in the multi-mode regime. The influence of parasitic oscillation is also discussed. A Nd:YAG planar waveguide laser has been established with a folded hybrid/unstable resonator. A maximum average power of 83 W with a beam propagation factor M-x(2) x M-y(2) = 1.2 x 1.4 is obtained. The theoretical simulation agrees well with the experimental observation. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new kind of Q switched laser, the bow tie laser is introduced. This type of laser permits large area facets at both ends so that generation of high optical powers involve low optical intensities to prevent optical damage. The incorporation of doubled tapered waveguide structure to the Q switched multicontact laser has increased the optical pulse energies and peak powers of the laser.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We fabricate double-wall carbon nanotube polymer composite saturable absorbers and demonstrate stable Q-switched and Mode-locked Thulium fiber lasers in a linear cavity and a ring cavity respectively. © 2012 OSA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a passively Q-switched thulium fiber laser, using a graphene-based saturable absorber. The laser is based on an all-fiber ring cavity and produces ∼2.3 μs pulses at 1884nm, with a maximum pulse energy of 70 nJ. © 2012 OSA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We fabricate double-wall carbon nanotube polymer composite saturable absorbers and demonstrate stable Q-switched and Mode-locked Thulium fiber lasers in a linear cavity and a ring cavity respectively. © 2011 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a passively Q-switched thulium fiber laser, using a graphene-based saturable absorber. The laser is based on an all-fiber ring cavity and produces ~2.3 μs pulses at 1884nm, with a maximum pulse energy of 70 nJ. © 2011 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a passively Q-switched thulium fiber laser, using a graphene-based saturable absorber. The laser is based on an all-fiber ring cavity and produces ~2.3 μs pulses at 1884nm, with a maximum pulse energy of 70 nJ. © 2011 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a passively Q-switched thulium fiber laser, using a graphene-based saturable absorber. The laser is based on an all-fiber ring cavity and produces ~2.3 μs pulses at 1884nm, with a maximum pulse energy of 70 nJ. ©2011 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on recent experimental results of the spontaneous antiphase dynamics that occurs in a laser-diode-pumped multimode passively Q-switched microchip Yb:YAG (where YAG is yttrium aluminum garnet) lasers with a saturable absorber GaAs. We observe that the pulse sequence of the first mode characterized by one, two, and three pulses as a group and all the modes display an antiphase state as the pumping ratio rises. We modify the multimode rate equations to account for nonlinear absorption due to GaAs in the presence of spatial hole burning. We perform numerical simulations based on the proposed rate equations and reproduce the observed antiphase state of two and three active modes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing demands in MEMS fabrication are leading to new requirements in production technology. Especially the packaging and assembly require high accuracy in positioning and high reproducibility in combination with low production costs. Conventional assembly technology and mechanical adjustment methods are time consuming and expensive. Each component of the system has to be positioned and fixed. Also adjustment of the parts after joining requires additional mechanical devices that need to be accessible after joining.