914 resultados para Projections onto convex sets


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Image restoration attempts to enhance images corrupted by noise and blurring effects. Iterative approaches can better control the restoration algorithm in order to find a compromise of restoring high details in smoothed regions without increasing the noise. Techniques based on Projections Onto Convex Sets (POCS) have been extensively used in the context of image restoration by projecting the solution onto hyperspaces until some convergence criteria be reached. It is expected that an enhanced image can be obtained at the final of an unknown number of projections. The number of convex sets and its combinations allow designing several image restoration algorithms based on POCS. Here, we address two convex sets: Row-Action Projections (RAP) and Limited Amplitude (LA). Although RAP and LA have already been used in image restoration domain, the former has a relaxation parameter (A) that strongly depends on the characteristics of the image that will be restored, i.e., wrong values of A can lead to poorly restoration results. In this paper, we proposed a hybrid Particle Swarm Optimization (PS0)-POCS image restoration algorithm, in which the A value is obtained by PSO to be further used to restore images by POCS approach. Results showed that the proposed PSO-based restoration algorithm outperformed the widely used Wiener and Richardson-Lucy image restoration algorithms. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Image restoration is a research field that attempts to recover a blurred and noisy image. Since it can be modeled as a linear system, we propose in this paper to use the meta-heuristics optimization algorithm Harmony Search (HS) to find out near-optimal solutions in a Projections Onto Convex Sets-based formulation to solve this problem. The experiments using HS and four of its variants have shown that we can obtain near-optimal and faster restored images than other evolutionary optimization approach. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência da Computação - IBILCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a hybrid technique for correcting distortions that appear when projecting images onto geometrically complex, colored and textured surfaces. It analyzes the optical flow that results from perspective distortions during motions of the observer and tries to use this information for computing the correct image warping. If this fails due to an unreliable optical flow, an accurate -but slower and visiblestructured light projection is automatically triggered. Together with an appropriate radiometric compensation, view-dependent content can be projected onto arbitrary everyday surfaces. An implementation mainly on the GPU ensures fast frame rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a partially ordered semigroup with the duality (or polarity) transform, it is pos- sible to define a generalisation of continued fractions. General sufficient conditions for convergence of continued fractions are provided. Two particular applications concern the cases of convex sets with the Minkowski addition and the polarity transform and the family of non-negative convex functions with the Legendre–Fenchel and Artstein-Avidan–Milman transforms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nonempty set F is called Motzkin decomposable when it can be expressed as the Minkowski sum of a compact convex set C with a closed convex cone D. In that case, the sets C and D are called compact and conic components of F. This paper provides new characterizations of the Motzkin decomposable sets involving truncations of F (i.e., intersections of FF with closed halfspaces), when F contains no lines, and truncations of the intersection F̂ of F with the orthogonal complement of the lineality of F, otherwise. In particular, it is shown that a nonempty closed convex set F is Motzkin decomposable if and only if there exists a hyperplane H parallel to the lineality of F such that one of the truncations of F̂ induced by H is compact whereas the other one is a union of closed halflines emanating from H. Thus, any Motzkin decomposable set F can be expressed as F=C+D, where the compact component C is a truncation of F̂. These Motzkin decompositions are said to be of type T when F contains no lines, i.e., when C is a truncation of F. The minimality of this type of decompositions is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A set is called Motzkin decomposable when it can be expressed as the Minkowski sum of a compact convex set with a closed convex cone. This paper analyzes the continuity properties of the set-valued mapping associating to each couple (C,D) formed by a compact convex set C and a closed convex cone D its Minkowski sum C + D. The continuity properties of other related mappings are also analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliographies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let E be an infinite dimensional separable space and for e ∈ E and X a nonempty compact convex subset of E, let qX(e) be the metric antiprojection of e on X. Let n ≥ 2 be an arbitrary integer. It is shown that for a typical (in the sence of the Baire category) compact convex set X ⊂ E the metric antiprojection qX(e) has cardinality at least n for every e in a dense subset of E.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

* This work was supported by the CNR while the author was visiting the University of Milan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lots of work has been done in texture feature extraction for rectangular images, but not as much attention has been paid to the arbitrary-shaped regions available in region-based image retrieval (RBIR) systems. In This work, we present a texture feature extraction algorithm, based on projection onto convex sets (POCS) theory. POCS iteratively concentrates more and more energy into the selected coefficients from which texture features of an arbitrary-shaped region can be extracted. Experimental results demonstrate the effectiveness of the proposed algorithm for image retrieval purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we demonstrate a digital signal processing (DSP) algorithm for improving spatial resolution of images captured by CMOS cameras. The basic approach is to reconstruct a high resolution (HR) image from a shift-related low resolution (LR) image sequence. The aliasing relationship of Fourier transforms between discrete and continuous images in the frequency domain is used for mapping LR images to a HR image. The method of projection onto convex sets (POCS) is applied to trace the best estimate of pixel matching from the LR images to the reconstructed HR image. Computer simulations and preliminary experimental results have shown that the algorithm works effectively on the application of post-image-captured processing for CMOS cameras. It can also be applied to HR digital image reconstruction, where shift information of the LR image sequence is known.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study projections onto non-degenerate one-dimensional families of lines and planes in R 3 . Using the classical potential theoretic approach of R. Kaufman, one can show that the Hausdorff dimension of at most 12 -dimensional sets [Math Processing Error] is typically preserved under one-dimensional families of projections onto lines. We improve the result by an ε , proving that if [Math Processing Error], then the packing dimension of the projections is almost surely at least [Math Processing Error]. For projections onto planes, we obtain a similar bound, with the threshold 12 replaced by 1 . In the special case of self-similar sets [Math Processing Error] without rotations, we obtain a full Marstrand-type projection theorem for 1-parameter families of projections onto lines. The [Math Processing Error] case of the result follows from recent work of M. Hochman, but the [Math Processing Error] part is new: with this assumption, we prove that the projections have positive length almost surely.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe finite sets of points, called sentinels, which allow us to decide if isometric copies of polygons, convex or not, intersect. As an example of the applicability of the concept of sentinel, we explain how they can be used to formulate an algorithm based on the optimization of differentiable models to pack polygons in convex sets. Mathematical subject classification: 90C53, 65K05.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study on some infinite convex invariants. The origin of convexity can be traced back to the period of Archimedes and Euclid. At the turn of the nineteenth centaury , convexicity became an independent branch of mathematics with its own problems, methods and theories. The convexity can be sorted out into two kinds, the first type deals with generalization of particular problems such as separation of convex sets[EL], extremality[FA], [DAV] or continuous selection Michael[M1] and the second type involved with a multi- purpose system of axioms. The theory of convex invariants has grown out of the classical results of Helly, Radon and Caratheodory in Euclidean spaces. Levi gave the first general definition of the invariants Helly number and Radon number. The notation of a convex structure was introduced by Jamison[JA4] and that of generating degree was introduced by Van de Vel[VAD8]. We also prove that for a non-coarse convex structure, rank is less than or equal to the generating degree, and also generalize Tverberg’s theorem using infinite partition numbers. Compare the transfinite topological and transfinite convex dimensions