957 resultados para Programmed cell death ligand-1 (PD-L1)
Resumo:
BACKGROUND Programmed cell death 1 (PD-1) receptor triggering by PD ligand 1 (PD-L1) inhibits T cell activation. PD-L1 expression was detected in different malignancies and associated with poor prognosis. Therapeutic antibodies inhibiting PD-1/PD-L1 interaction have been developed. MATERIALS AND METHODS A tissue microarray (n=1491) including healthy colon mucosa and clinically annotated colorectal cancer (CRC) specimens was stained with two PD-L1 specific antibody preparations. Surgically excised CRC specimens were enzymatically digested and analysed for cluster of differentiation 8 (CD8) and PD-1 expression. RESULTS Strong PD-L1 expression was observed in 37% of mismatch repair (MMR)-proficient and in 29% of MMR-deficient CRC. In MMR-proficient CRC strong PD-L1 expression correlated with infiltration by CD8(+) lymphocytes (P=0.0001) which did not express PD-1. In univariate analysis, strong PD-L1 expression in MMR-proficient CRC was significantly associated with early T stage, absence of lymph node metastases, lower tumour grade, absence of vascular invasion and significantly improved survival in training (P=0.0001) and validation (P=0.03) sets. A similar trend (P=0.052) was also detectable in multivariate analysis including age, sex, T stage, N stage, tumour grade, vascular invasion, invasive margin and MMR status. Interestingly, programmed death receptor ligand 1 (PDL-1) and interferon (IFN)-γ gene expression, as detected by quantitative reverse transcriptase polymerase chain reaction (RT-PCR) in fresh frozen CRC specimens (n=42) were found to be significantly associated (r=0.33, P=0.03). CONCLUSION PD-L1 expression is paradoxically associated with improved survival in MMR-proficient CRC.
Resumo:
The majority of HIV-infected individuals fail to produce protective antibodies and have diminished responses to new immunizations. We report here that even though there is an expansion of follicular helper T (TFH) cells in HIV-infected individuals, the cells are unable to provide adequate B cell help. We found a higher frequency of programmed cell death ligand 1 (PD-L1)(+) germinal center B cells from lymph nodes of HIV-infected individuals suggesting a potential role for PD-1-PD-L1 interaction in regulating TFH cell function. In fact, we show that engagement of PD-1 on TFH cells leads to a reduction in cell proliferation, activation, inducible T-cell co-stimulator (ICOS) expression and interleukin-21 (IL-21) cytokine secretion. Blocking PD-1 signaling enhances HIV-specific immunoglobulin production in vitro. We further show that at least part of this defect involves IL-21, as addition of this cytokine rescues antibody responses and plasma cell generation in vitro. Our results suggest that deregulation of TFH cell-mediated B cell help diminishes B cell responses during HIV infection and may be related to PD-1 triggering on TFH cells. These results demonstrate a role for TFH cell impairment in HIV pathogenesis and suggest that enhancing their function could have a major impact on the outcome and control of HIV infection, preventing future infections and improving immune responses to vaccinations.
Resumo:
Small cell lung cancer (SCLC) is an aggressive neuroendocrine tumor diagnosed at extended disease SCLC (ES-SCLC) stage in about 70% of cases. The new standard of treatment for patients with ES-SCLC is a combination of platinum-etoposide chemotherapy and atezolizumab or durvalumab, two programmed cell death ligand 1 (PD-L1) inhibitory monoclonal antibodies (mAb). However, the benefit derived from the addition of PD-L1 inhibitors to chemotherapy in ES-SCLC was limited and restricted to a subset of patients. The vascular endothelial growth factor (VEGF) is the most important pro-angiogenic factor implicated in cancer angiogenesis, which is abundant in SCLC and associated with poor prognosis. Antiangiogenic agents, such as bevacizumab, a humanized mAb against VEGF, added to platinum-etoposide chemotherapy improved progression-free survival in SCLC in two trials, but it did not translate into a benefit in overall survival. Nevertheless, VEGF has also acts as a mediator of an immunosuppressive microenvironment and its inhibition can revert the immune-suppressive tumor microenvironment and potentially enhance the efficacy of immunotherapies. Based on available preclinical data, we hypothesized that VEGF inhibition by bevacizumab could improve atezolizumab efficacy in a synergistic way and designed a phase II single-arm trial of bevacizumab in combination with carboplatin, etoposide, and atezolizumab as first-line treatment in ES-SCLC. The trial, which is still ongoing, enrolled 53 patients, including those with treated or untreated asymptomatic brain metastases (provided criteria are met), who received atezolizumab, bevacizumab, carboplatin and etoposide for 4-6 cycles (induction phase), followed by maintenance with atezolizumab and bevacizumab for a maximum of 18 total cycles or until disease progression, patient refusal, unacceptable toxicity. The evaluation of efficacy of the experimental combination in terms of 1-year overall survival rate is not yet mature (primary objective of the trial). The combination was feasible and the toxicity profile manageable (secondary objective of the trial).
Resumo:
Epidemiological data point toward a critical period in early life during which environmental cues can set an individual on a trajectory toward respiratory health or disease. The neonatal immune system matures during this period, although little is known about the signals that lead to its maturation. Here we report that the formation of the lung microbiota is a key parameter in this process. Immediately following birth, neonatal mice were prone to develop exaggerated airway eosinophilia, release type 2 helper T cell cytokines and exhibit airway hyper-responsiveness following exposure to house dust mite allergens, even though their lungs harbored high numbers of natural CD4(+)Foxp3(+)CD25(+)Helios(+) regulatory T (Treg) cells. During the first 2 weeks after birth, the bacterial load in the lungs increased, and representation of the bacterial phyla shifts from a predominance of Gammaproteobacteria and Firmicutes towards Bacteroidetes. The changes in the microbiota were associated with decreased aeroallergen responsiveness and the emergence of a Helios(-) Treg cell subset that required interaction with programmed death ligand 1 (PD-L1) for development. Absence of microbial colonization(10) or blockade of PD-L1 during the first 2 weeks postpartum maintained exaggerated responsiveness to allergens through to adulthood. Adoptive transfer of Treg cells from adult mice to neonates before aeroallergen exposure ameliorated disease. Thus, formation of the airway microbiota induces regulatory cells early in life, which, when dysregulated, can lead to sustained susceptibility to allergic airway inflammation in adulthood.
Resumo:
BACKGROUND: The CD28 homologue programmed death-1 (PD-1) and its ligands, PD-L1 and PD-L2 (which are homologous to B7), constitute an inhibitory pathway of T cell costimulation. The PD-1 pathway is of interest for immune-mediated diseases given that PD-1-deficient mice develop autoimmune diseases. We have evaluated the effect of local overexpression of a PD-L1.Ig fusion protein on cardiac allograft survival. METHODS: Adenovirus-mediated PD-L1.Ig gene transfer was performed in F344 rat donor hearts placed in the abdominal position in Lewis recipients. Inflammatory cell infiltrates in the grafts were assessed by immunohistochemistry. RESULTS: Allografts transduced with the PD-L1.Ig gene survived for longer periods of time compared with those receiving noncoding adenovirus or virus dilution buffer alone: median survival time (MST), 17 (range: 16-20) days vs. 11 (8-14) and 9 (8-13) days, respectively (P < 0.001). PD-L1.Ig gene transfer combined with a subtherapeutic regimen of cyclosporin A (CsA) was superior to CsA alone: MST, 25 (15-42) vs. 15 (13-19) days (P < 0.05). PD-L1.Ig gene transfer was associated with decreased numbers of CD4 cells and monocytes/macrophages infiltrating the graft (P < 0.05). CONCLUSIONS: Localized PD-L1.Ig expression in donor hearts attenuates acute allograft rejection in a rat model. The effect is additive to that of a subtherapeutic regimen of CsA. These results suggest that targeting of PD-1 by gene therapy may inhibit acute cardiac allograft rejection in vivo.
Resumo:
BACKGROUND: Immune checkpoint inhibitors targeting programmed cell death 1 (PD1) or its ligand (PD-L1) showed activity in several cancer types. METHODS: We performed immunohistochemistry for CD3, CD8, CD20, HLA-DR, phosphatase and tensin homolog (PTEN), PD-1, and PD-L1 and pyrosequencing for assessment of the O6-methylguanine-methyltransferase (MGMT) promoter methylation status in 135 glioblastoma specimens (117 initial resection, 18 first local recurrence). PD-L1 gene expression was analyzed in 446 cases from The Cancer Genome Atlas. RESULTS: Diffuse/fibrillary PD-L1 expression of variable extent, with or without interspersed epithelioid tumor cells with membranous PD-L1 expression, was observed in 103 of 117 (88.0%) newly diagnosed and 13 of 18 (72.2%) recurrent glioblastoma specimens. Sparse-to-moderate density of tumor-infiltrating lymphocytes (TILs) was found in 85 of 117 (72.6%) specimens (CD3+ 78/117, 66.7%; CD8+ 52/117, 44.4%; CD20+ 27/117, 23.1%; PD1+ 34/117, 29.1%). PD1+ TIL density correlated positively with CD3+ (P < .001), CD8+ (P < .001), CD20+ TIL density (P < .001), and PTEN expression (P = .035). Enrichment of specimens with low PD-L1 gene expression levels was observed in the proneural and G-CIMP glioblastoma subtypes and in specimens with high PD-L1 gene expression in the mesenchymal subtype (P = 5.966e-10). No significant differences in PD-L1 expression or TIL density between initial and recurrent glioblastoma specimens or correlation of PD-L1 expression or TIL density with patient age or outcome were evident. CONCLUSION: TILs and PD-L1 expression are detectable in the majority of glioblastoma samples but are not related to outcome. Because the target is present, a clinical study with specific immune checkpoint inhibitors seems to be warranted in glioblastoma.
Resumo:
The programmed death 1 (PD-1) receptor is a negative regulator of activated T cells and is up-regulated on exhausted virus-specific CD8(+) T cells in chronically infected mice and humans. Programmed death ligand 1 (PD-L1) is expressed by multiple tumors, and its interaction with PD-1 resulted in tumor escape in experimental models. To investigate the role of PD-1 in impairing spontaneous tumor Ag-specific CD8(+) T cells in melanoma patients, we have examined the effect of PD-1 expression on ex vivo detectable CD8(+) T cells specific to the tumor Ag NY-ESO-1. In contrast to EBV, influenza, or Melan-A/MART-1-specific CD8(+) T cells, NY-ESO-1-specific CD8(+) T cells up-regulated PD-1 expression. PD-1 up-regulation on spontaneous NY-ESO-1-specific CD8(+) T cells occurs along with T cell activation and is not directly associated with an inability to produce cytokines. Importantly, blockade of the PD-1/PD-L1 pathway in combination with prolonged Ag stimulation with PD-L1(+) APCs or melanoma cells augmented the number of cytokine-producing, proliferating, and total NY-ESO-1-specific CD8(+) T cells. Collectively, our findings support the role of PD-1 as a regulator of NY-ESO-1-specific CD8(+) T cell expansion in the context of chronic Ag stimulation. They further support the use of PD-1/PD-L1 pathway blockade in cancer patients to partially restore NY-ESO-1-specific CD8(+) T cell numbers and functions, increasing the likelihood of tumor regression.
Novel Imaging-Based Techniques Reveal a Role for PD-1/PD-L1 in Tumor Immune Surveillance in the Lung
Resumo:
The binding of immune inhibitory receptor Programmed Death 1 (PD-1) on T cells to its ligand PD-L1 has been implicated as a major contributor to tumor induced immune suppression. Clinical trials of PD-L1 blockade have proven effective in unleashing therapeutic anti-tumor immune responses in a subset of patients with advanced melanoma, yet current response rates are low for reasons that remain unclear. Hypothesizing that the PD-1/PD-L1 pathway regulates T cell surveillance within the tumor microenvironment, we employed intravital microscopy to investigate the in vivo impact of PD-L1 blocking antibody upon tumor-associated immune cell migration. However, current analytical methods of intravital dynamic microscopy data lack the ability to identify cellular targets of T cell interactions in vivo, a crucial means for discovering which interactions are modulated by therapeutic intervention. By developing novel imaging techniques that allowed us to better analyze tumor progression and T cell dynamics in the microenvironment; we were able to explore the impact of PD-L1 blockade upon the migratory properties of tumor-associated immune cells, including T cells and antigen presenting cells, in lung tumor progression. Our results demonstrate that early changes in tumor morphology may be indicative of responsiveness to anti-PD-L1 therapy. We show that immune cells in the tumor microenvironment as well as tumors themselves express PD-L1, but immune phenotype alone is not a predictive marker of effective anti-tumor responses. Through a novel method in which we quantify T cell interactions, we show that T cells are largely engaged in interactions with dendritic cells in the tumor microenvironment. Additionally, we show that during PD-L1 blockade, non-activated T cells are recruited in greater numbers into the tumor microenvironment and engage more preferentially with dendritic cells. We further show that during PD-L1 blockade, activated T cells engage in more confined, immune synapse-like interactions with dendritic cells, as opposed to more dynamic, kinapse-like interactions with dendritic cells when PD-L1 is free to bind its receptor. By advancing the contextual analysis of anti-tumor immune surveillance in vivo, this study implicates the interaction between T cells and tumor-associated dendritic cells as a possible modulator in targeting PD-L1 for anti-tumor immunotherapy.
Resumo:
In the last two decades, anti-cancer vaccines have yielded disappointing clinical results despite the fact that high numbers of self/tumor-specific T cells can be elicited in immunized patients. Understanding the reasons behind this lack of efficacy is critical in order to design better treatment regimes. Recombinant lentivectors (rLVs) have been successfully used to induce antigen-specific T cells to foreign or mutated tumor antigens. Here, we show that rLV expressing a murine nonmutated self/tumor antigen efficiently primes large numbers of self/tumor-specific CD8(+) T cells. In spite of the large number of tumor-specific T cells, however, no anti-tumor activity could be measured in a therapeutic setting, in mice vaccinated with rLV. Accumulating evidence shows that, in the presence of malignancies, inhibition of T-cell activity may predominate overstimulation. Analysis of tumor-infiltrating lymphocytes revealed that specific anti-tumor CD8(+) T cells fail to produce cytokines and express high levels of inhibitory receptors such as programmed death (PD)-1. Association of active immunization with chemotherapy or antibodies that block inhibitory pathways often leads to better anti-tumor effects. We show here that combining rLV vaccination with either cyclophosphamide or PD-1 and PD-L1 blocking antibodies enhances rLV vaccination efficacy and improves anti-tumor immunity.
Resumo:
Despite intensive investigation, no clearly defined mechanism explaining human immunodeficiency virus (HIV)-induced cell killing has emerged. HIV-1 infection is initiated through a high-affinity interaction between the HIV-1 external envelope glycoprotein (gp120) and the CD4 receptor on T cells. Cell killing is a later event intimately linked by in vitro genetic analyses with the fusogenic properties of the HIV envelope glycoprotein gp120 and transmembrane glycoprotein gp41. In this report, we describe aberrancies in cell cycle regulatory proteins initiated by cell-cell contact between T cells expressing HIV-1 envelope glycoproteins and other T cells expressing CD4 receptors. Cells rapidly accumulate cyclin B protein and tyrosine-hyperphosphorylated p34cdc2 (cdk1) kinase, indicative of cell cycle arrest at G2 phase. Moreover, these cells continue to synthesize cyclin B protein, enlarge and display an abnormal ballooned morphology, and disappear from the cultures in a pattern previously described for cytotoxicity induced by DNA synthesis (S phase) inhibitors. Similar changes are observed in peripheral blood mononuclear cells infected in vitro with pathogenic primary isolates of HIV-1.
Resumo:
Cells die through a programmed process or accidental death, know as apoptosis or necrosis, respectively. Bothrops jararaca is a snake whose venom inhibits the growth of Trypanosoma cruzi epimastigote forms causing mitochondrion swelling and cell death. The aim of the present work was to determine the type of death induced in epimastigotes of T. cruzi by this venom. Parasite growth was inhibited after venom treatment, and 50% growth inhibition was obtained with 10 µg/ml. Ultrastructural observations confirmed mitochondrion swelling and kinetoplast disorganization. Furthermore, cytoplasmic condensation, loss of mitochondrion membrane potential, time-dependent increase in phosphatidylserine exposure at the outer leaflet plasma membrane followed by permeabilization, activation of caspase like protein and DNA fragmentation were observed in epimastigotes throughout a 24 h period of venom treatment. Taken together, these results indicate that the stress induced in epimastigote by this venom, triggers a programmed cell death process, similar to metazoan apoptosis, which leads to parasite death.
Resumo:
Bisphosphonates are potent inhibitors of osteoclast function widely used to treat conditions of excessive bone resorption, including tumor bone metastases. Recent evidence indicates that bisphosphonates have direct cytotoxic activity on tumor cells and suppress angiogenesis, but the associated molecular events have not been fully characterized. In this study we investigated the effects of zoledronate, a nitrogen-containing bisphosphonate, and clodronate, a non-nitrogen-containing bisphosphonate, on human umbilical vein endothelial cell (HUVEC) adhesion, migration, and survival, three events essential for angiogenesis. Zoledronate inhibited HUVEC adhesion mediated by integrin alphaVbeta3, but not alpha5beta1, blocked migration and disrupted established focal adhesions and actin stress fibers without modifying cell surface integrin expression level or affinity. Zoledronate treatment slightly decreased HUVEC viability and strongly enhanced tumor necrosis factor (TNF)-induced cell death. HUVEC treated with zoledronate and TNF died without evidence of enhanced annexin-V binding, chromatin condensation, or nuclear fragmentation and caspase dependence. Zoledronate inhibited sustained phosphorylation of focal adhesion kinase (FAK) and in combination with TNF, with and without interferon (IFN) gamma, of protein kinase B (PKB/Akt). Constitutive active PKB/Akt protected HUVEC from death induced by zoledronate and TNF/IFNgamma. Phosphorylation of c-Src and activation of NF-kappaB were not affected by zoledronate. Clodronate had no effect on HUVEC adhesion, migration, and survival nor did it enhanced TNF cytotoxicity. Taken together these data demonstrate that zoledronate sensitizes endothelial cells to TNF-induced, caspase-independent programmed cell death and point to the FAK-PKB/Akt pathway as a novel zoledronate target. These results have potential implications to the clinical use of zoledronate as an anti-angiogenic or anti-cancer agent.
Resumo:
This study aims to explore the effect of microRNA-21 (miR-21) on the proliferation of human degenerated nucleus pulposus (NP) by targeting programmed cell death 4 (PDCD4) tumor suppressor. NP tissues were collected from 20 intervertebral disc degeneration (IDD) patients, and from 5 patients with traumatic spine fracture. MiR-21 expressions were tested. NP cells from IDD patients were collected and divided into blank control group, negative control group (transfected with miR-21 negative sequences), miR-21 inhibitor group (transfected with miR-21 inhibitors), miR-21 mimics group (transfected with miR-21 mimics) and PDCD4 siRNA group (transfected with PDCD4 siRNAs). Cell growth was estimated by Cell Counting Kit-8; PDCD4, MMP-2,MMP-9 mRNA expressions were evaluated by qRT-PCR; PDCD4, c-Jun and p-c-Jun expressions were tested using western blot. In IDD patients, the expressions of miR-21 and PDCD4 mRNA were respectively elevated and decreased (both P<0.05). The miR-21 expressions were positively correlated with Pfirrmann grades, but negatively correlated with PDCD4 mRNA (both P<0.001). In miR-21 inhibitor group, cell growth, MMP-2 and MMP-9 mRNA expressions, and p-c-Jun protein expressions were significantly lower, while PDCD4 mRNA and protein expressions were higher than the other groups (all P<0.05). These expressions in the PDCD4 siRNA and miR-21 mimics groups was inverted compared to that in the miR-21 inhibitor group (all P<0.05). MiR-21 could promote the proliferation of human degenerated NP cells by targeting PDCD4, increasing phosphorylation of c-Jun protein, and activating AP-1-dependent transcription of MMPs, indicating that miR-21 may be a crucial biomarker in the pathogenesis of IDD.