937 resultados para Process control -- Statistical methods


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Univariate statistical control charts, such as the Shewhart chart, do not satisfy the requirements for process monitoring on a high volume automated fuel cell manufacturing line. This is because of the number of variables that require monitoring. The risk of elevated false alarms, due to the nature of the process being high volume, can present problems if univariate methods are used. Multivariate statistical methods are discussed as an alternative for process monitoring and control. The research presented is conducted on a manufacturing line which evaluates the performance of a fuel cell. It has three stages of production assembly that contribute to the final end product performance. The product performance is assessed by power and energy measurements, taken at various time points throughout the discharge testing of the fuel cell. The literature review performed on these multivariate techniques are evaluated using individual and batch observations. Modern techniques using multivariate control charts on Hotellings T2 are compared to other multivariate methods, such as Principal Components Analysis (PCA). The latter, PCA, was identified as the most suitable method. Control charts such as, scores, T2 and DModX charts, are constructed from the PCA model. Diagnostic procedures, using Contribution plots, for out of control points that are detected using these control charts, are also discussed. These plots enable the investigator to perform root cause analysis. Multivariate batch techniques are compared to individual observations typically seen on continuous processes. Recommendations, for the introduction of multivariate techniques that would be appropriate for most high volume processes, are also covered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose - The aim of this paper is to present a synthetic chart based on the non-central chi-square statistic that is operationally simpler and more effective than the joint X̄ and R chart in detecting assignable cause(s). This chart will assist in identifying which (mean or variance) changed due to the occurrence of the assignable causes. Design/methodology/approach - The approach used is based on the non-central chi-square statistic and the steady-state average run length (ARL) of the developed chart is evaluated using a Markov chain model. Findings - The proposed chart always detects process disturbances faster than the joint X̄ and R charts. The developed chart can monitor the process instead of looking at two charts separately. Originality/value - The most important advantage of using the proposed chart is that practitioners can monitor the process by looking at only one chart instead of looking at two charts separately. © Emerald Group Publishing Limted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’objecte del present treball és la realització d’una aplicació que permeti portar a terme el control estadístic multivariable en línia d’una planta SBR.Aquesta eina ha de permetre realitzar un anàlisi estadístic multivariable complet del lot en procés, de l’últim lot finalitzat i de la resta de lots processats a la planta.L’aplicació s’ha de realitzar en l’entorn LabVIEW. L’elecció d’aquest programa vecondicionada per l’actualització del mòdul de monitorització de la planta que s’estàdesenvolupant en aquest mateix entorn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’objecte del present treball és la realització d’una aplicació que permeti portar a terme el control estadístic multivariable en línia d’una planta SBR. Aquesta eina ha de permetre realitzar un anàlisi estadístic multivariable complet del lot en procés, de l’últim lot finalitzat i de la resta de lots processats a la planta. L’aplicació s’ha de realitzar en l’entorn LabVIEW. L’elecció d’aquest programa ve condicionada per l’actualització del mòdul de monitorització de la planta que s’està desenvolupant en aquest mateix entorn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Produção Vegetal) - FCAV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This graduate work approaches the study of Statistical Process Control - SPC, in a stage production of an industrial frame, aiming to use the tool of statistical process control (SPC) to assess the process capability. Where the process needs improvement as well not meet the specifications. Assessing the needs that the company needs to improve quality management, and the difficulties they present during the implementation of the CEP. The present study is to use the method of case study. The results are presented through study, and checking the capacity and stability of the process using control charts XbarraR. The process demonstrated the need for improvements in process and quality management. At the end of the work are presented suggestions for improving the quality system of the company

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia de Produção - FEB

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Ciência do Solo) - FCAV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Produção Vegetal) - FCAV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In which refers to statistical process control, the analysis of univariate cases is not enough for many types of company, being necessary to resort to multivariate cases. Besides, it is usually supposed that the observations are independent. However, the violation of this hypothesis indicates the existence of autocorrelation in the process. In this work, by a basic quantitative approach for an exploratory and experimental research, the study target are the multivariate autocorrelated control charts, using Hotteling T². The ARL values were collected by simulations of a computational program on FORTRAN language, with objective of studying the charts properties, in addition to compare with the

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In which refers to statistical process control, the analysis of univariate cases is not enough for many types of company, being necessary to resort to multivariate cases. Besides, it is usually supposed that the observations are independent. However, the violation of this hypothesis indicates the existence of autocorrelation in the process. In this work, by a basic quantitative approach for an exploratory and experimental research, the study target are the multivariate autocorrelated control charts, using Hotteling T². The ARL values were collected by simulations of a computational program on FORTRAN language, with objective of studying the charts properties, in addition to compare with the

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The monitoring of infection control indicators including hospital-acquired infections is an established part of quality maintenance programmes in many health-care facilities. However, surveillance data use can be frustrated by the infrequent nature of many infections. Traditional methods of analysis often provide delayed identification of increasing infection occurrence, placing patients at preventable risk. The application of Shewhart, Cumulative Sum (CUSUM) and Exponentially Weighted Moving Average (EWMA) statistical process control charts to the monitoring of indicator infections allows continuous real-time assessment. The Shewhart chart will detect large changes, while CUSUM and EWMA methods are more suited to recognition of small to moderate sustained change. When used together, Shewhart and EWMA methods are ideal for monitoring bacteraemia and multiresistant organism rates. Shewhart and CUSUM charts are suitable for surgical infection surveillance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The strongest wish of the customer concerning chemical pulp features is consistent, uniform quality. Variation may be controlled and reduced by using statistical methods. However, studies addressing the application and benefits of statistical methods in forest product sector are scarce. Thus, the customer wish is the root cause of the motivation behind this dissertation. The research problem addressed by this dissertation is that companies in the chemical forest product sector require new knowledge for improving their utilization of statistical methods. To gain this new knowledge, the research problem is studied from five complementary viewpoints – challenges and success factors, organizational learning, problem solving, economic benefit, and statistical methods as management tools. The five research questions generated on the basis of these viewpoints are answered in four research papers, which are case studies based on empirical data collection. This research as a whole complements the literature dealing with the use of statistical methods in the forest products industry. Practical examples of the application of statistical process control, case-based reasoning, the cross-industry standard process for data mining, and performance measurement methods in the context of chemical forest products manufacturing are brought to the public knowledge of the scientific community. The benefit of the application of these methods is estimated or demonstrated. The purpose of this dissertation is to find pragmatic ideas for companies in the chemical forest product sector in order for them to improve their utilization of statistical methods. The main practical implications of this doctoral dissertation can be summarized in four points: 1. It is beneficial to reduce variation in chemical forest product manufacturing processes 2. Statistical tools can be used to reduce this variation 3. Problem-solving in chemical forest product manufacturing processes can be intensified through the use of statistical methods 4. There are certain success factors and challenges that need to be addressed when implementing statistical methods

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contexte. Les études cas-témoins sont très fréquemment utilisées par les épidémiologistes pour évaluer l’impact de certaines expositions sur une maladie particulière. Ces expositions peuvent être représentées par plusieurs variables dépendant du temps, et de nouvelles méthodes sont nécessaires pour estimer de manière précise leurs effets. En effet, la régression logistique qui est la méthode conventionnelle pour analyser les données cas-témoins ne tient pas directement compte des changements de valeurs des covariables au cours du temps. Par opposition, les méthodes d’analyse des données de survie telles que le modèle de Cox à risques instantanés proportionnels peuvent directement incorporer des covariables dépendant du temps représentant les histoires individuelles d’exposition. Cependant, cela nécessite de manipuler les ensembles de sujets à risque avec précaution à cause du sur-échantillonnage des cas, en comparaison avec les témoins, dans les études cas-témoins. Comme montré dans une étude de simulation précédente, la définition optimale des ensembles de sujets à risque pour l’analyse des données cas-témoins reste encore à être élucidée, et à être étudiée dans le cas des variables dépendant du temps. Objectif: L’objectif général est de proposer et d’étudier de nouvelles versions du modèle de Cox pour estimer l’impact d’expositions variant dans le temps dans les études cas-témoins, et de les appliquer à des données réelles cas-témoins sur le cancer du poumon et le tabac. Méthodes. J’ai identifié de nouvelles définitions d’ensemble de sujets à risque, potentiellement optimales (le Weighted Cox model and le Simple weighted Cox model), dans lesquelles différentes pondérations ont été affectées aux cas et aux témoins, afin de refléter les proportions de cas et de non cas dans la population source. Les propriétés des estimateurs des effets d’exposition ont été étudiées par simulation. Différents aspects d’exposition ont été générés (intensité, durée, valeur cumulée d’exposition). Les données cas-témoins générées ont été ensuite analysées avec différentes versions du modèle de Cox, incluant les définitions anciennes et nouvelles des ensembles de sujets à risque, ainsi qu’avec la régression logistique conventionnelle, à des fins de comparaison. Les différents modèles de régression ont ensuite été appliqués sur des données réelles cas-témoins sur le cancer du poumon. Les estimations des effets de différentes variables de tabac, obtenues avec les différentes méthodes, ont été comparées entre elles, et comparées aux résultats des simulations. Résultats. Les résultats des simulations montrent que les estimations des nouveaux modèles de Cox pondérés proposés, surtout celles du Weighted Cox model, sont bien moins biaisées que les estimations des modèles de Cox existants qui incluent ou excluent simplement les futurs cas de chaque ensemble de sujets à risque. De plus, les estimations du Weighted Cox model étaient légèrement, mais systématiquement, moins biaisées que celles de la régression logistique. L’application aux données réelles montre de plus grandes différences entre les estimations de la régression logistique et des modèles de Cox pondérés, pour quelques variables de tabac dépendant du temps. Conclusions. Les résultats suggèrent que le nouveau modèle de Cox pondéré propose pourrait être une alternative intéressante au modèle de régression logistique, pour estimer les effets d’expositions dépendant du temps dans les études cas-témoins