993 resultados para Probabilistic methods
Resumo:
In recent decades, an increased interest has been evidenced in the research on multi-scale hierarchical modelling in the field of mechanics, and also in the field of wood products and timber engineering. One of the main motivations for hierar-chical modelling is to understand how properties, composition and structure at lower scale levels may influence and be used to predict the material properties on a macroscopic and structural engineering scale. This chapter presents the applicability of statistic and probabilistic methods, such as the Maximum Likelihood method and Bayesian methods, in the representation of timber’s mechanical properties and its inference accounting to prior information obtained in different importance scales. These methods allow to analyse distinct timber’s reference properties, such as density, bending stiffness and strength, and hierarchically consider information obtained through different non, semi or destructive tests. The basis and fundaments of the methods are described and also recommendations and limitations are discussed. The methods may be used in several contexts, however require an expert’s knowledge to assess the correct statistic fitting and define the correlation arrangement between properties.
Resumo:
This thesis introduces a flexible visual data exploration framework which combines advanced projection algorithms from the machine learning domain with visual representation techniques developed in the information visualisation domain to help a user to explore and understand effectively large multi-dimensional datasets. The advantage of such a framework to other techniques currently available to the domain experts is that the user is directly involved in the data mining process and advanced machine learning algorithms are employed for better projection. A hierarchical visualisation model guided by a domain expert allows them to obtain an informed segmentation of the input space. Two other components of this thesis exploit properties of these principled probabilistic projection algorithms to develop a guided mixture of local experts algorithm which provides robust prediction and a model to estimate feature saliency simultaneously with the training of a projection algorithm.Local models are useful since a single global model cannot capture the full variability of a heterogeneous data space such as the chemical space. Probabilistic hierarchical visualisation techniques provide an effective soft segmentation of an input space by a visualisation hierarchy whose leaf nodes represent different regions of the input space. We use this soft segmentation to develop a guided mixture of local experts (GME) algorithm which is appropriate for the heterogeneous datasets found in chemoinformatics problems. Moreover, in this approach the domain experts are more involved in the model development process which is suitable for an intuition and domain knowledge driven task such as drug discovery. We also derive a generative topographic mapping (GTM) based data visualisation approach which estimates feature saliency simultaneously with the training of a visualisation model.
Resumo:
For climate risk management, cumulative distribution functions (CDFs) are an important source of information. They are ideally suited to compare probabilistic forecasts of primary (e.g. rainfall) or secondary data (e.g. crop yields). Summarised as CDFs, such forecasts allow an easy quantitative assessment of possible, alternative actions. Although the degree of uncertainty associated with CDF estimation could influence decisions, such information is rarely provided. Hence, we propose Cox-type regression models (CRMs) as a statistical framework for making inferences on CDFs in climate science. CRMs were designed for modelling probability distributions rather than just mean or median values. This makes the approach appealing for risk assessments where probabilities of extremes are often more informative than central tendency measures. CRMs are semi-parametric approaches originally designed for modelling risks arising from time-to-event data. Here we extend this original concept beyond time-dependent measures to other variables of interest. We also provide tools for estimating CDFs and surrounding uncertainty envelopes from empirical data. These statistical techniques intrinsically account for non-stationarities in time series that might be the result of climate change. This feature makes CRMs attractive candidates to investigate the feasibility of developing rigorous global circulation model (GCM)-CRM interfaces for provision of user-relevant forecasts. To demonstrate the applicability of CRMs, we present two examples for El Ni ? no/Southern Oscillation (ENSO)-based forecasts: the onset date of the wet season (Cairns, Australia) and total wet season rainfall (Quixeramobim, Brazil). This study emphasises the methodological aspects of CRMs rather than discussing merits or limitations of the ENSO-based predictors.
Resumo:
This work aims to evaluate the reliability of these levee systems, calculating the probability of “failure” of determined levee stretches under different loads, using probabilistic methods that take into account the fragility curves obtained through the Monte Carlo Method. For this study overtopping and piping are considered as failure mechanisms (since these are the most frequent) and the major levee system of the Po River with a primary focus on the section between Piacenza and Cremona, in the lower-middle area of the Padana Plain, is analysed. The novelty of this approach is to check the reliability of individual embankment stretches, not just a single section, while taking into account the variability of the levee system geometry from one stretch to another. This work takes also into consideration, for each levee stretch analysed, a probability distribution of the load variables involved in the definition of the fragility curves, where it is influenced by the differences in the topography and morphology of the riverbed along the sectional depth analysed as it pertains to the levee system in its entirety. A type of classification is proposed, for both failure mechanisms, to give an indication of the reliability of the levee system based of the information obtained by the fragility curve analysis. To accomplish this work, an hydraulic model has been developed where a 500-year flood is modelled to determinate the residual hazard value of failure for each stretch of levee near the corresponding water depth, then comparing the results with the obtained classifications. This work has the additional the aim of acting as an interface between the world of Applied Geology and Environmental Hydraulic Engineering where a strong collaboration is needed between the two professions to resolve and improve the estimation of hydraulic risk.
Resumo:
The use of probabilistic methods to analyse reliability of structures is being applied to a variety of engineering problems due to the possibility of establishing the failure probability on rational grounds. In this paper we present the application of classical reliability theory to analyse the safety of underground tunnels.
Resumo:
Deregulations and market practices in power industry have brought great challenges to the system planning area. In particular, they introduce a variety of uncertainties to system planning. New techniques are required to cope with such uncertainties. As a promising approach, probabilistic methods are attracting more and more attentions by system planners. In small signal stability analysis, generation control parameters play an important role in determining the stability margin. The objective of this paper is to investigate power system state matrix sensitivity characteristics with respect to system parameter uncertainties with analytical and numerical approaches and to identify those parameters have great impact on system eigenvalues, therefore, the system stability properties. Those identified parameter variations need to be investigated with priority. The results can be used to help Regional Transmission Organizations (RTOs) and Independent System Operators (ISOs) perform planning studies under the open access environment.
Resumo:
* The work is partially supported by Grant no. NIP917 of the Ministry of Science and Education – Republic of Bulgaria.
Resumo:
In the deregulated Power markets it is necessary to have a appropriate Transmission Pricing methodology that also takes into account “Congestion and Reliability”, in order to ensure an economically viable, equitable, and congestion free power transfer capability, with high reliability and security. This thesis presents results of research conducted on the development of a Decision Making Framework (DMF) of concepts and data analytic and modelling methods for the Reliability benefits Reflective Optimal “cost evaluation for the calculation of Transmission Cost” for composite power systems, using probabilistic methods. The methodology within the DMF devised and reported in this thesis, utilises a full AC Newton-Raphson load flow and a Monte-Carlo approach to determine, Reliability Indices which are then used for the proposed Meta-Analytical Probabilistic Approach (MAPA) for the evaluation and calculation of the Reliability benefit Reflective Optimal Transmission Cost (ROTC), of a transmission system. This DMF includes methods for transmission line embedded cost allocation among transmission transactions, accounting for line capacity-use as well as congestion costing that can be used for pricing using application of Power Transfer Distribution Factor (PTDF) as well as Bialek’s method to determine a methodology which consists of a series of methods and procedures as explained in detail in the thesis for the proposed MAPA for ROTC. The MAPA utilises the Bus Data, Generator Data, Line Data, Reliability Data and Customer Damage Function (CDF) Data for the evaluation of Congestion, Transmission and Reliability costing studies using proposed application of PTDF and other established/proven methods which are then compared, analysed and selected according to the area/state requirements and then integrated to develop ROTC. Case studies involving standard 7-Bus, IEEE 30-Bus and 146-Bus Indian utility test systems are conducted and reported throughout in the relevant sections of the dissertation. There are close correlation between results obtained through proposed application of PTDF method with the Bialek’s and different MW-Mile methods. The novel contributions of this research work are: firstly the application of PTDF method developed for determination of Transmission and Congestion costing, which are further compared with other proved methods. The viability of developed method is explained in the methodology, discussion and conclusion chapters. Secondly the development of comprehensive DMF which helps the decision makers to analyse and decide the selection of a costing approaches according to their requirements. As in the DMF all the costing approaches have been integrated to achieve ROTC. Thirdly the composite methodology for calculating ROTC has been formed into suits of algorithms and MATLAB programs for each part of the DMF, which are further described in the methodology section. Finally the dissertation concludes with suggestions for Future work.
Resumo:
In restructured power systems, generation and commercialization activities became market activities, while transmission and distribution activities continue as regulated monopolies. As a result, the adequacy of transmission network should be evaluated independent of generation system. After introducing the constrained fuzzy power flow (CFPF) as a suitable tool to quantify the adequacy of transmission network to satisfy 'reasonable demands for the transmission of electricity' (as stated, for instance, at European Directive 2009/72/EC), the aim is now showing how this approach can be used in conjunction with probabilistic criteria in security analysis. In classical security analysis models of power systems are considered the composite system (generation plus transmission). The state of system components is usually modeled with probabilities and loads (and generation) are modeled by crisp numbers, probability distributions or fuzzy numbers. In the case of CFPF the component’s failure of the transmission network have been investigated. In this framework, probabilistic methods are used for failures modeling of the transmission system components and possibility models are used to deal with 'reasonable demands'. The enhanced version of the CFPF model is applied to an illustrative case.
Resumo:
Introduction / Aims: Adopting the important decisions represents a specific task of the manager. An efficient manager takes these decisions during a sistematic process with well-defined elements, each with a precise order. In the pharmaceutical practice and business, in the supply process of the pharmacies, there are situations when the medicine distributors offer a certain discount, but require payment in a shorter period of time. In these cases, the analysis of the offer can be made with the help of the decision tree method, which permits identifying the decision offering the best possible result in a given situation. The aims of the research have been the analysis of the product offers of many different suppliers and the establishing of the most advantageous ways of pharmacy supplying. Material / Methods: There have been studied the general product offers of the following medical stores: A&G Med, Farmanord, Farmexim, Mediplus, Montero and Relad. In the case of medicine offers including a discount, the decision tree method has been applied in order to select the most advantageous offers. The Decision Tree is a management method used in taking the right decisions and it is generally used when one needs to evaluate the decisions that involve a series of stages. The tree diagram is used in order to look for the most efficient means to attain a specific goal. The decision trees are the most probabilistic methods, useful when adopting risk taking decisions. Results: The results of the analysis on the tree diagrams have indicated the fact that purchasing medicines with discount (1%, 10%, 15%) and payment in a shorter time interval (120 days) is more profitable than purchasing without a discount and payment in a longer time interval (160 days). Discussion / Conclusion: Depending on the results of the tree diagram analysis, the pharmacies would purchase from the selected suppliers. The research has shown that the decision tree method represents a valuable work instrument in choosing the best ways for supplying pharmacies and it is very useful to the specialists from the pharmaceutical field, pharmaceutical management, to medicine suppliers, pharmacy practitioners from the community pharmacies and especially to pharmacy managers, chief – pharmacists.
Resumo:
Dissertação para a obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Estruturas
Resumo:
Nowadays the incredible grow of mobile devices market led to the need for location-aware applications. However, sometimes person location is difficult to obtain, since most of these devices only have a GPS (Global Positioning System) chip to retrieve location. In order to suppress this limitation and to provide location everywhere (even where a structured environment doesn’t exist) a wearable inertial navigation system is proposed, which is a convenient way to track people in situations where other localization systems fail. The system combines pedestrian dead reckoning with GPS, using widely available, low-cost and low-power hardware components. The system innovation is the information fusion and the use of probabilistic methods to learn persons gait behavior to correct, in real-time, the drift errors given by the sensors.
Resumo:
Assessing the safety of existing timber structures is of paramount importance for taking reliable decisions on repair actions and their extent. The results obtained through semi-probabilistic methods are unrealistic, as the partial safety factors present in codes are calibrated considering the uncertainty present in new structures. In order to overcome these limitations, and also to include the effects of decay in the safety analysis, probabilistic methods, based on Monte-Carlo simulation are applied here to assess the safety of existing timber structures. In particular, the impact of decay on structural safety is analyzed and discussed, using a simple structural model, similar to that used for current semi-probabilistic analysis.
Resumo:
BACKGROUND: Available methods to simulate nucleotide or amino acid data typically use Markov models to simulate each position independently. These approaches are not appropriate to assess the performance of combinatorial and probabilistic methods that look for coevolving positions in nucleotide or amino acid sequences. RESULTS: We have developed a web-based platform that gives a user-friendly access to two phylogenetic-based methods implementing the Coev model: the evaluation of coevolving scores and the simulation of coevolving positions. We have also extended the capabilities of the Coev model to allow for the generalization of the alphabet used in the Markov model, which can now analyse both nucleotide and amino acid data sets. The simulation of coevolving positions is novel and builds upon the developments of the Coev model. It allows user to simulate pairs of dependent nucleotide or amino acid positions. CONCLUSIONS: The main focus of our paper is the new simulation method we present for coevolving positions. The implementation of this method is embedded within the web platform Coev-web that is freely accessible at http://coev.vital-it.ch/, and was tested in most modern web browsers.
Resumo:
A complex network is an abstract representation of an intricate system of interrelated elements where the patterns of connection hold significant meaning. One particular complex network is a social network whereby the vertices represent people and edges denote their daily interactions. Understanding social network dynamics can be vital to the mitigation of disease spread as these networks model the interactions, and thus avenues of spread, between individuals. To better understand complex networks, algorithms which generate graphs exhibiting observed properties of real-world networks, known as graph models, are often constructed. While various efforts to aid with the construction of graph models have been proposed using statistical and probabilistic methods, genetic programming (GP) has only recently been considered. However, determining that a graph model of a complex network accurately describes the target network(s) is not a trivial task as the graph models are often stochastic in nature and the notion of similarity is dependent upon the expected behavior of the network. This thesis examines a number of well-known network properties to determine which measures best allowed networks generated by different graph models, and thus the models themselves, to be distinguished. A proposed meta-analysis procedure was used to demonstrate how these network measures interact when used together as classifiers to determine network, and thus model, (dis)similarity. The analytical results form the basis of the fitness evaluation for a GP system used to automatically construct graph models for complex networks. The GP-based automatic inference system was used to reproduce existing, well-known graph models as well as a real-world network. Results indicated that the automatically inferred models exemplified functional similarity when compared to their respective target networks. This approach also showed promise when used to infer a model for a mammalian brain network.